In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence.
View Article and Find Full Text PDFRegenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order.
View Article and Find Full Text PDFCollagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM. The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and, where angiogenesis is intended, endothelial cells. Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type.
View Article and Find Full Text PDFX-ray micro-computed tomography (μ-CT) can be used to provide both qualitative and quantitative information on the structure of three-dimensional (3D) bioactive scaffolds. When performed in a dry state, μ-CT accurately reflects the structure of collagen-based scaffolds, but imaging in a wet state offers challenges with radiolucency. Here we have used phosphotungstic acid (PTA) as a contrast agent to visualise fully hydrated collagen scaffolds in a physiologically relevant environment.
View Article and Find Full Text PDFRecreating the cell niche of virtually all tissues requires composite materials fabricated from multiple extracellular matrix (ECM) macromolecules. Due to their wide tissue distribution, physical attributes and purity, collagen, and more recently, tropoelastin, represent two appealing ECM components for biomaterials development. Here we blend tropoelastin and collagen, harnessing the cell-modulatory properties of each biomolecule.
View Article and Find Full Text PDFPorous biomaterials which provide a structural and biological support for cells have immense potential in tissue engineering and cell-based therapies for tissue repair. Collagen biomaterials that can host endothelial cells represent promising tools for the vascularization of engineered tissues. Three-dimensional collagen scaffolds possessing controlled architecture and mechanical stiffness are obtained through freeze-drying of collagen suspensions, followed by chemical cross-linking which maintains their stability.
View Article and Find Full Text PDFIt has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric , in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions.
View Article and Find Full Text PDFCollagen constructs are widely used for tissue engineering. These are frequently chemically crosslinked, using EDC, to improve their stability and tailor their physical properties. Although generally biocompatible, chemical crosslinking can modify crucial amino acid side chains, such as glutamic acid, that are involved in integrin-mediated cell adhesion.
View Article and Find Full Text PDFCollagen is used extensively in tissue engineering due to its biocompatibility, near-universal tissue distribution, low cost and purity. However, native tissues are composites that include diverse extracellular matrix components, which influence strongly their mechanical and biological properties. Here, we provide important new findings on the differential regulation, by collagen and elastin, of the bio-response to the composite material.
View Article and Find Full Text PDFPDMS is widely used for prosthetic device manufacture. Conventional ion implantation is not a suitable treatment to enhance the biocompatibility of poly dimethyl siloxane (PDMS) due to its propensity to generate a brittle silicon oxide surface layer which cracks and delaminates. To overcome this limitation, we have developed new plasma based processes to balance the etching of carbon with implantation of carbon from the plasma source.
View Article and Find Full Text PDFThe article "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry", written by Natalia Davidenko, Carlos F. Schuster, Daniel V. Bax, Richard W.
View Article and Find Full Text PDFUnlabelled: Accurate evaluation of the biological performance of biomaterials requires the correct assessment of their native-like cell ligation properties. However, cell attachment studies often overlook the details of the substrate-cell binding mechanisms, be they integrin-mediated or non-specific, and ignore the class- and species-specificities of the cell adhesion receptor involved. In this work we have used different collagen (Col) substrates (fibrillar collagens I, II and III and network-forming Col IV), containing different affinity cell-recognition motifs, to establish the influence of the receptor identity and species-specificity on collagen-cell interactive properties.
View Article and Find Full Text PDFA significant body of research has considered collagen as a scaffold material for soft tissue regeneration. The main structural component of extra-cellular matrix (ECM), collagen's advantages over synthetic polymers are numerous. However, for applications where higher stiffness and stability are required, significant cross-linking may affect bioactivity.
View Article and Find Full Text PDFUnlabelled: Research on the development of collagen constructs is extremely important in the field of tissue engineering. Collagen scaffolds for numerous tissue engineering applications are frequently crosslinked with 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride (EDC) in the presence of N-hydroxy-succinimide (NHS). Despite producing scaffolds with good biocompatibility and low cellular toxicity the influence of EDC/NHS crosslinking on the cell interactive properties of collagen has been overlooked.
View Article and Find Full Text PDFStudies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations.
View Article and Find Full Text PDF