Publications by authors named "Daniel B Zurek"

Adult jumping spiders are known for their extraordinary eyesight and complex, visually guided behaviors, including elaborate communicatory displays, navigational abilities, and prey-specific predatory strategies. Juvenile spiders also exhibit many of these behaviors, yet their visual systems are many times smaller. How do juveniles retain high visually guided performance despite severe size constraints on their visual systems? We investigated developmental changes in eye morphology and visual function in the jumping spider Phidippus audax using morphology, histology, ophthalmoscopy, and optical measurements.

View Article and Find Full Text PDF

Spiders are among the world's most species-rich animal lineages, and their visual systems are likewise highly diverse. These modular visual systems, composed of four pairs of image-forming "camera" eyes, have taken on a huge variety of forms, exhibiting variation in eye size, eye placement, image resolution, and field of view, as well as sensitivity to color, polarization, light levels, and motion cues. However, despite this conspicuous diversity, our understanding of the genetic underpinnings of these visual systems remains shallow.

View Article and Find Full Text PDF

Insects live in a three-dimensional space, and need to be able to attach to different types of surfaces in a variety of environmental and behavioral contexts. Adult leaf beetles possess great attachment ability due to their hairy attachment pads. In contrast, their larvae depend on smooth pads to attach to the same host plant.

View Article and Find Full Text PDF

While adult green dock leaf beetles Gastrophysa viridula use tarsal adhesive setae to attach to and walk on smooth vertical surfaces and ceilings, larvae apply different devices for similar purposes: pretarsal adhesive pads on thoracic legs and a retractable pygopod at the 10th abdominal segment. Both are soft smooth structures and capable of wet adhesion. We studied attachment ability of different larval instars, considering the relationship between body weight and real contact area between attachment devices and the substrate.

View Article and Find Full Text PDF

In dynamic locomotory contexts, visual cues often trigger adaptive behaviour by the viewer, yet studies investigating how animals determine impending collisions typically employ either stationary viewers or objects. Here, we describe a dynamic situation of visually guided prey pursuit in which both impending prey contact and escape elicit observable adaptive behaviours in the pursuer, a predatory beetle. We investigated which visual cues may independently control opening and closing of the beetle's jaws during chases of prey dummies.

View Article and Find Full Text PDF

High visual acuity allows parallel processing of distant environmental features, but only when photons are abundant enough. Diurnal tiger beetles (Carabidae: Cicindelinae) have acute vision for insects and visually pursue prey in open, flat habitats. Their fast running speed causes motion blur that degrades visual contrast, forces stop-and-go pursuit and potentially impairs obstacle detection.

View Article and Find Full Text PDF

Moving animals often have difficulty detecting moving objects because self-generated optic flow patterns confound image motion. The new hypothesis of 'regressive motion salience' reveals simple rules used by fruit flies.

View Article and Find Full Text PDF

Jumping spiders (Salticidae) are renowned for their high performing visual system. In addition to their prominent forward-facing telescope-like principal eyes, salticids possess two or three pairs of secondary eyes used for wide-angle motion detection. Salticids orient towards relevant sources of motion detected by the secondary eyes, enabling them to inspect the stimulus with their spatially acute principal eyes.

View Article and Find Full Text PDF

The modular visual system of jumping spiders (Salticidae) divides characteristics such as high spatial acuity and wide-field motion detection between different pairs of eyes. A large pair of telescope-like anterior-median (AM) eyes is supported by 2-3 pairs of 'secondary' eyes, which provide almost 360 degrees of visual coverage at lower resolution. The AM retinae are moveable and can be pointed at stimuli within their range of motion, but salticids have to turn to bring targets into this frontal zone in the first place.

View Article and Find Full Text PDF

Jumping spiders, or salticids, sample their environment using a combination of two types of eyes. The forward-facing pair of 'principal' eyes have narrow fields of view, but exceptional spatial resolution, while the two or three pairs of 'secondary' eyes have wide fields of view and function especially well as motion analysers. Motion detected by the secondary eyes may elicit an orienting response, whereupon the object of interest is examined further using the high-acuity principal eyes.

View Article and Find Full Text PDF