Grasshoppers, Melanoplus sanguinipes (Orthoptera: Acrididae), develop larger head width (HW) and shorter leg length, relative to body size, when fed low nutrient, lignin-rich grasses compared to sibs fed a diet of high nutrient grasses. To elucidate how underlying genetic variation and plasticity of growth generate plasticity of this linear static allometry within coarse-grained environments, I measured head and leg size of three nymphal instars and adult grasshoppers raised on either a low or high nutrient diet within a half-sib quantitative genetic experiment. Doubly-multivariate repeated measures multiple analysis of variance (MANOVA) of head, mandible, and hind leg size and their rate of growth (mm/period) and growth period (days) through ontogeny were used to analyze how the ontogeny of diet-induced plasticity for these variables and additive genetic variation for plasticity (genotype × environment interaction [G×E]) contribute to plasticity in functional linear static allometry.
View Article and Find Full Text PDFGreat Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region.
View Article and Find Full Text PDFPhenotypic plasticity may be an ecologically important evolutionary response to natural selection in multiple environments. I have determined the effect of diet-induced developmental plasticity in the head size of grasshoppers (Melanoplus femurrubrum) onfeeding performance on two types of plants. Full-sib families were divided and raised on either red clover, Trifolium repens, or rye grass, Lolium perenne.
View Article and Find Full Text PDFPatterns of geographic variation in tree-climbing ability of Peromyscus maniculatus were used to examine the influence of spatial variation in natural selection and gene flow on the genetic divergence of climbing behavior among populations. Offspring of adults of two subspecies sampled from 10 localities in montane conifer forest, conifer woodland, and desert scrub/grassland habitats were raised in the laboratory and tested to determine their tree-climbing ability (the maximum diameter artificial rod that a mouse could climb). Comparisons of mean rod-climbing scores revealed that individuals of P.
View Article and Find Full Text PDF