Publications by authors named "Daniel Arp"

High representation by ammonia-oxidizing archaea (AOA) in marine systems is consistent with their high affinity for ammonia, efficient carbon fixation, and copper (Cu)-centric respiratory system. However, little is known about their response to nutrient stress. We therefore used global transcriptional and proteomic analyses to characterize the response of a model AOA, Nitrosopumilus maritimus SCM1, to ammonia starvation, Cu limitation and Cu excess.

View Article and Find Full Text PDF

Nitrobacter winogradskyi Nb-255 is a nitrite-oxidizing bacterium that can grow solely on nitrite (NO2(-)) as a source of energy and nitrogen. In most natural situations, NO2(-) oxidation is coupled closely to ammonium (NH4(+)) oxidation by bacteria and archaea and, conceptually, N. winogradskyi can save energy using NH4(+) to meet its N-biosynthetic requirements.

View Article and Find Full Text PDF

Nitrosomonas europaea and Nitrobacter winogradskyi were grown singly and in co-culture in chemostats to probe for physiological differences between the two growth conditions. Co-culture growth medium containing 60 mM NH4 (+) resulted in a cell density (0.20-0.

View Article and Find Full Text PDF

Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N.

View Article and Find Full Text PDF

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate.

View Article and Find Full Text PDF

Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤ 20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne).

View Article and Find Full Text PDF

Nitrifier denitrification is the conversion of nitrite to nitrous oxide by ammonia-oxidizing organisms. This process, which is distinct from denitrification, is active under aerobic conditions in the model nitrifier Nitrosomonas europaea. The central enzyme of the nitrifier dentrification pathway is a copper nitrite reductase (CuNIR).

View Article and Find Full Text PDF
Article Synopsis
  • Nocardioides sp. strain CF8 was isolated from soil at the Hanford Department of Energy site in Richland, WA.
  • This strain can grow on butane and shows promise for biodegrading halogenated hydrocarbons.
  • The draft genome sequence of Nocardioides sp. strain CF8 has been reported, providing insights into its characteristics and capabilities.
View Article and Find Full Text PDF

The ammonia-oxidizing archaea have recently been recognized as a significant component of many microbial communities in the biosphere. Although the overall stoichiometry of archaeal chemoautotrophic growth via ammonia (NH(3)) oxidation to nitrite (NO(2)(-)) is superficially similar to the ammonia-oxidizing bacteria, genome sequence analyses point to a completely unique biochemistry. The only genomic signature linking the bacterial and archaeal biochemistries of NH(3) oxidation is a highly divergent homolog of the ammonia monooxygenase (AMO).

View Article and Find Full Text PDF

The importance of iron to the metabolism of the ammonia-oxidizing bacterium Nitrosomonas europaea is well known. However, the mechanisms by which N. europaea acquires iron under iron limitation are less well known.

View Article and Find Full Text PDF

Rubrerythrins are diiron-containing peroxidases that belong to the ferritin-like superfamily (FLSF). Here, we describe the structures of symerythrin, a novel rubrerythrin variant from the oxygenic phototroph Cyanophora paradoxa, at 1.20-1.

View Article and Find Full Text PDF

Nitrosomonas sp. strain AL212 is an obligate chemolithotrophic ammonia-oxidizing bacterium (AOB) that was originally isolated in 1997 by Yuichi Suwa and colleagues. This organism belongs to Nitrosomonas cluster 6A, which is characterized by sensitivity to high ammonia concentrations, higher substrate affinity (lower K(m)), and lower maximum growth rates than strains in Nitrosomonas cluster 7, which includes Nitrosomonas europaea and Nitrosomonas eutropha.

View Article and Find Full Text PDF

The Gram-positive bacterium Nocardioides sp. strain CF8 uses a membrane-associated monooxygenase (pBMO) to grow on butane. The nucleotide sequences of the genes encoding this novel monooxygenase were revealed through analysis of a de novo assembled draft genome sequence determined by high-throughput sequencing of the whole genome.

View Article and Find Full Text PDF

All known internal covalent cross-links in proteins involve functionalized groups having oxygen, nitrogen, or sulfur atoms present to facilitate their formation. Here, we report a carbon-carbon cross-link between two unfunctionalized side chains. This valine-phenyalanine cross-link, produced in an oxygen-dependent reaction, is generated by its own carboxylate-bridged diiron center and serves to stabilize the metallocenter.

View Article and Find Full Text PDF

Background: In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of Nitrosomonas europaea, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family.

Results: Of the three N.

View Article and Find Full Text PDF

The chemolithoautotroph Nitrosomonas europaea oxidizes about 25 mol of NH(3) for each mole of CO(2) that is converted to biomass using an array of heme and nonheme Fe-containing proteins. Hence mechanisms of efficient iron (Fe) uptake and homeostasis are particularly important for this Betaproteobacterium. Among nitrifiers, N.

View Article and Find Full Text PDF

Formally annotated π-helices are rare in protein structures but have been correlated with functional sites. Here, we analyze protein structures to show that π-helices are the same as structures known as α-bulges, α-aneurisms, π-bulges, and looping outs, and are evolutionarily derived by the insertion of a single residue into an α-helix. This newly discovered evolutionary origin explains both why π-helices are cryptic, being rarely annotated despite occurring in 15% of known proteins, and why they tend to be associated with function.

View Article and Find Full Text PDF

Bacterial small noncoding RNAs (sRNAs) have been discovered in many genetically well-studied microorganisms and have been shown to regulate critical cellular processes at the post-transcriptional level. In this study, we used comparative genomics and microarray data to analyze the genome of the ammonia-oxidizing bacterium Nitrosomonas europaea for the presence and expression of sRNAs. Fifteen genes encoding putative sRNAs (psRNAs) were identified.

View Article and Find Full Text PDF

Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe(3+)-ABC transporter permease components from other organisms. The N.

View Article and Find Full Text PDF

Nocardioides sp. strain JS614 grows on the C(2) alkenes ethene (Eth), vinyl chloride, and vinyl fluoride as sole carbon sources. The presence of 400-800 microM ethene oxide (EtO) extended the growth substrate range to propene (C(3)) and butene (C(4)).

View Article and Find Full Text PDF

The process of nitrification has the potential for the in situ bioremediation of halogenated compounds provided a number of challenges can be overcome. In nitrification, the microbial process where ammonia is oxidized to nitrate, ammonia-oxidizing bacteria (AOB) are key players and are capable of carrying out the biodegradation of recalcitrant halogenated compounds. Through industrial uses, halogenated compounds often find their way into wastewater, contaminating the environment and bodies of water that supply drinking water.

View Article and Find Full Text PDF

Methanotrophs are well known for their ability to grow on methane in natural gas environments; however, these environments also contain low concentrations of longer-chain-length gaseous alkanes. This mixture of alkanes poses a problem for organisms that might otherwise grow on alkanes ≥ C2 because methane could inhibit oxidation of growth substrates and lead to an accumulation of toxic C1 metabolites. Here, we have characterized the growth of a C2 -C9 alkane-utilizing bacterium, Thauera butanivorans, in conditions containing high concentrations of methane and small amounts (< 3% of total alkane) of C2 -C4 .

View Article and Find Full Text PDF

The placement of 'Pseudomonas butanovora' in the genus Thauera was proposed previously, based on 16S rRNA gene sequence analysis, upon further studies of taxonomical characteristics. In this study, physiological characteristics and DNA-DNA reassociation data are presented and the transfer of 'P. butanovora' to the genus Thauera is proposed.

View Article and Find Full Text PDF

Soluble butane monooxygenase (sBMO), a three-component di-iron monooxygenase complex expressed by the C(2)-C(9) alkane-utilizing bacterium Thauera butanivorans, was kinetically characterized by measuring substrate specificities for C(1)-C(5) alkanes and product inhibition profiles. sBMO has high sequence homology with soluble methane monooxygenase (sMMO) and shares a similar substrate range, including gaseous and liquid alkanes, aromatics, alkenes and halogenated xenobiotics. Results indicated that butane was the preferred substrate (defined by k(cat) : K(m) ratios).

View Article and Find Full Text PDF

Transcriptional fusions with gfp driven by the promoter region of mbla (NE2571) in pPRO/mbla4 and clpB (NE2402) in pPRO/clpb7 were used to transform the ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718). The two genes were chosen because their transcript levels were found at much higher levels in N. europaea in response to oxidation of chloroform and chloromethane.

View Article and Find Full Text PDF