Light dark fermions can mass mix with the standard model (SM) neutrinos. As a result, through oscillations and scattering, they can equilibrate in the early universe. Interactions of the dark fermion generically suppress such production at high temperatures but enhance it at later times.
View Article and Find Full Text PDFWe explore the sensitivity of photon-beam experiments to axionlike particles (ALPs) with QCD-scale masses whose dominant coupling to the standard model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux when considering coherent Primakoff production off a nuclear target, and show that data collected by the PrimEx experiment in 2004 could improve the sensitivity to ALPs with 0.03≲m_{a}≲0.
View Article and Find Full Text PDFWe present a novel data-driven method for determining the hadronic interaction strengths of axionlike particles (ALPs) with QCD-scale masses. Using our method, it is possible to calculate the hadronic production and decay rates of ALPs, along with many of the largest ALP decay rates to exclusive final states. To illustrate the impact on QCD-scale ALP phenomenology, we consider the scenario where the ALP-gluon coupling is dominant over the ALP coupling to photons, electroweak bosons, and all fermions for m_{π}≲m_{a}≲3 GeV.
View Article and Find Full Text PDF