Publications by authors named "Daniel Almonacid"

Introduction: The gut microbiome's influence on weight management has gained significant interest for its potential to support better obesity therapeutics. Patient stratification leading to personalized nutritional intervention has shown benefits over one-size-fit-all diets. However, the efficacy and impact on the gut's microbiome of personalizing weight loss diets based on individual factors remains under-investigated.

View Article and Find Full Text PDF

Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how genetic, lifestyle, and gut microbiome factors contribute to differences in mental health improvements during weight-loss interventions for individuals with neuropsychiatric diseases and obesity.
  • - Participants in the study, who were part of a digital health program, lost an average of 5.4% of their body weight, and over 95% reported improved mental health symptoms, indicating a potential link between weight loss and mental well-being.
  • - Significant correlations were found between genetic scores and mental health conditions like anxiety and depression, as well as between gut microbial functions and sleep problems, suggesting that both genetics and gut health play roles in how individuals respond to weight-loss interventions in terms of mental health.
View Article and Find Full Text PDF

Diet and lifestyle-related illnesses including functional gastrointestinal disorders (FGIDs) and obesity are rapidly emerging health issues worldwide. Research has focused on addressing FGIDs via in-person cognitive-behavioral therapies, diet modulation and pharmaceutical intervention. Yet, there is paucity of research reporting on digital therapeutics care delivering weight loss and reduction of FGID symptom severity, and on modeling FGID status and symptom severity reduction including personalized genomic SNPs and gut microbiome signals.

View Article and Find Full Text PDF

Understanding the effectiveness and potential mechanism of action of agricultural biological products under different soil profiles and crops will allow more precise product recommendations based on local conditions and will ultimately result in increased crop yield. This study aimed to use bulk soil and rhizosphere microbial composition and structure to evaluate the potential effect of a Bacillus amyloliquefaciens inoculant (strain QST713) on potatoes and to explore its relationship with crop yield. We implemented next-generation sequencing (NGS) and bioinformatics approaches to assess the bacterial and fungal biodiversity in 185 soil samples, distributed over four different time points-from planting to harvest-from three different geographical locations in the United States.

View Article and Find Full Text PDF

Objective: Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is difficult to diagnose and treat due to its inherent heterogeneity and unclear aetiology. Although there is evidence suggesting the importance of the microbiome in IBS, this association remains poorly defined. In the current study, we aimed to characterise a large cross-sectional cohort of patients with self-reported IBS in terms of microbiome composition, demographics, and risk factors.

View Article and Find Full Text PDF

Here, we report the draft sequence of strain DSM 14534, originally isolated from human feces. This draft contains 74 contigs, comprising 3,718,760 bp with a G+C content of 42.87%.

View Article and Find Full Text PDF

The composition of the vaginal microbiome, including both the presence of pathogens involved in sexually transmitted infections (STI) as well as commensal microbiota, has been shown to have important associations for a woman's reproductive and general health. Currently, healthcare providers cannot offer comprehensive vaginal microbiome screening, but are limited to the detection of individual pathogens, such as high-risk human papillomavirus (hrHPV), the predominant cause of cervical cancer. There is no single test on the market that combines HPV, STI, and microbiome screening.

View Article and Find Full Text PDF

Background: Hospitalization and antibiotic treatment can put patients at high risk for Clostridium difficile infection, where a disturbance of the gut microbiome allows for Clostridium difficile proliferation and associated symptoms, including mild, moderate, or severe diarrhea. Clostridium difficile infection is challenging to treat, often recurrent, and leads to almost 30,000 annual deaths in the USA alone. Here we present a case where SmartGut™, an at-home, self-administered sequencing-based clinical intestinal screening test, was used to identify the presence of Clostridium difficile in a patient with worsening diarrhea.

View Article and Find Full Text PDF

In most industrialized countries, screening programs for cervical cancer have shifted from cytology (Pap smear or ThinPrep) alone on clinician-obtained samples to the addition of screening for human papillomavirus (HPV), its main causative agent. For HPV testing, self-sampling instead of clinician-sampling has proven to be equally accurate, in particular for assays that use nucleic acid amplification techniques. In addition, HPV testing of self-collected samples in combination with a follow-up Pap smear in case of a positive result is more effective in detecting precancerous lesions than a Pap smear alone.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase 1 (IDH1) is a dimeric enzyme responsible for supplying the cell's nicotinamide adenine dinucleotide phosphate (NADPH) reserves via dehydrogenation of isocitrate (ICT) and reduction of NADP+. Mutations in position R132 trigger cancer by enabling IDH1 to produce D-2-hydroxyglutarate (2-HG) and reduce inhibition by ICT. Mutant IDH1 can be found as a homodimer or a heterodimer.

View Article and Find Full Text PDF

Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS.

View Article and Find Full Text PDF
Article Synopsis
  • Changes in gut microorganisms can indicate various diseases, highlighting the need for improved diagnostic methods.
  • A new molecular assay using targeted sequencing of the microbial 16S rRNA gene allows for the accurate quantification of gut microbes, helping to establish a healthy reference range.
  • This assay successfully identifies clinically relevant gut microorganisms and could improve disease diagnosis and monitoring, while also aiding research on the microbiome's role in human health.
View Article and Find Full Text PDF

Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups.

View Article and Find Full Text PDF

Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues.

View Article and Find Full Text PDF

Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.

View Article and Find Full Text PDF

The Structure-Function Linkage Database (SFLD, http://sfld.rbvi.ucsf.

View Article and Find Full Text PDF

The number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans-polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging.

View Article and Find Full Text PDF

MACiE (which stands for Mechanism, Annotation and Classification in Enzymes) is a database of enzyme reaction mechanisms, and can be accessed from http://www.ebi.ac.

View Article and Find Full Text PDF

Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities.

View Article and Find Full Text PDF

Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database.

View Article and Find Full Text PDF

We report, for the first time, on the statistics of chemical mechanisms and amino acid residue functions that occur in enzyme reaction sequences using the MACiE database of 202 distinct enzyme reaction mechanisms as a knowledge base. MACiE currently holds representatives from each Enzyme Commission sub-subclass where there is an available crystal structure and sufficient evidence in the primary literature for a mechanism. Each catalytic step of every reaction sequence in MACiE is fully annotated, so that it includes the function of the catalytic residues involved in the reaction and the chemical mechanisms by which substrates are transformed into products.

View Article and Find Full Text PDF

The concept of reaction similarity has been well studied in terms of the overall transformation associated with a reaction, but not in terms of mechanism. We present the first method to give a quantitative measure of the similarity of reactions based upon their explicit mechanisms. Two approaches are presented to measure the similarity between individual steps of mechanisms: a fingerprint-based approach that incorporates relevant information on each mechanistic step; and an approach based only on bond formation, cleavage and changes in order.

View Article and Find Full Text PDF

A semiempirical methodology to model the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer (FRET) pathways in the rods of the phycobilisomes (PBSs) from Fremyella diplosiphon is presented. Using the Förster formulation of FRET and combining experimental data and PM3 calculation of the dipole moments of the aromatic portions of the chromophores, transfer constants between pairs of chromophores in the phycocyanin (PC) structure were obtained. Protein docking of two PC hexamers was used to predict the optimal distance and axial rotation angle for the staked PCs in the PBSs' rods.

View Article and Find Full Text PDF