Gamma-delta T cells (γδ T cells) play a crucial role in both innate and adaptive immunity within tumors, yet their presence and prognostic value in cancer remain underexplored. This study presents a large-scale analysis of γδ T cell receptor (γδ TCR) reads from 11,000 tumor samples spanning 33 cancer types, utilizing the TRUST4 algorithm. Our findings reveal extensive diversity in γδ TCR clonality and gene expression, underscoring the potential of γδ T cells as prognostic biomarkers in various cancers.
View Article and Find Full Text PDFNotch signaling regulates cell fate decisions and has context-dependent tumorigenic or tumor suppressor functions. Although there are several classes of Notch inhibitors, the mechanical force requirement for Notch receptor activation has hindered attempts to generate soluble agonists. To address this problem, we engineered synthetic Notch agonist (SNAG) proteins by tethering affinity-matured Notch ligands to antibodies or cytokines that internalize their targets.
View Article and Find Full Text PDFThis report presents the largest collection of gamma-delta T cell receptor (γδ TCR) reads in human cancer to date, analyzing about 11,000 patient tumor samples across 33 cancer types using the TRUST4 algorithm. Despite γδ T cells being a small fraction of the T cell population, they play a key role in both innate and adaptive immunity. Our comprehensive analysis reveals their significant presence across all cancer types, specifically highlighting the diverse spectrum and clonality patterns of their γδ receptors.
View Article and Find Full Text PDFBackground: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress.
Methods: We analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells.
Background: The role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralizing antibody response from natural infection and vaccination, and the potential determinants of this response are poorly understood. Characterizing this antibody response and the factors associated with neutralization can help inform future prevention efforts and improve clinical outcomes in those infected.
Objectives: The goals of this study were to prospectively evaluate SARS-CoV-2 antibody levels and the neutralizing antibody responses among naturally infected adults and to determine demographic and behavioral factors independently associated with these responses.
Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is both the most common and aggressive type of primary brain tumor, associated with high mortality rates and resistance to conventional therapy. Despite recent advancements in knowledge and molecular profiling, recurrence of GBM is nearly inevitable. This recurrence has been attributed to the presence of glioma stem cells (GSCs), a small fraction of cells resistant to standard-of-care treatments and capable of self-renewal and tumor initiation.
View Article and Find Full Text PDFConventionally, adoptive cell therapies have been developed and optimized using αβ T cells. However, the understudied and less abundant γδ T cells offer unique advantages to the immunotherapy field especially for therapies against solid tumors. Recently, γδ T-cell potential against a broad spectrum of malignant cells has been demonstrated in the preclinical setting.
View Article and Find Full Text PDFBackground: Neuroendocrine tumors (NETs) overexpress somatostatin receptors (SSTRs).
Methods: We developed a second-generation, ligand-based, anti-SSTR chimeric antigen receptor (CAR) incorporating the somatostatin analog octreotide in its extracellular moiety.
Results: Anti-SSTR CAR T cells exerted antitumor activity against SSTR+NET cell linesin vitro.
The development of autologous chimeric antigen receptor T (CAR-T) cell therapies has revolutionized cancer treatment. Nevertheless, the delivery of CAR-T cell therapy faces challenges, including high costs, lengthy production times, and manufacturing failures. To overcome this, attempts have been made to develop allogeneic CAR-T cells using donor-derived conventional CD4 or CD8 T cells (T), but severe graft-versus-host disease (GvHD) and host immune rejection have made this challenging.
View Article and Find Full Text PDFMultiple systemic treatments are currently available for advanced cancers of the digestive tract, but none of them is curative. Adoptive T-cell immunotherapy refers to the extraction, modification and re-infusion of autologous or allogenic T lymphocytes for therapeutic purposes. A number of clinical trials have investigated either non-engineered T cells (i.
View Article and Find Full Text PDFWhile immune checkpoint inhibitors (ICIs) have ushered in major changes in standards of care for many solid tumor malignancies, primary and acquired resistance is common. Insufficient antitumor T cells, inadequate function of these cells, and impaired formation of memory T cells all contribute to resistance mechanisms to ICI. Adoptive cellular therapy (ACT) is a form of immunotherapy that is rapidly growing in clinical investigation and has the potential to overcome these limitations by its ability to augment the number, specificity, and reactivity of T cells against tumor tissue.
View Article and Find Full Text PDFBackground And Aims: Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties.
Methods: We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the humanized YP7 (hYP7) and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively.
In this effort we explain fundamental formulations for aggregate data inverse problems requiring estimation of probability distribution parameters. We use as a motivating example a class of CAR T-call cancer models in mice. After ascertaining results on model stability and sensitivity with respect to parameters, we carry out first elementary computations on the question how much data is needed for successful estimation of probability distributions.
View Article and Find Full Text PDFThe adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design.
View Article and Find Full Text PDFMathematical modeling in biology has a long history as it allows the analysis and simulation of complex dynamic biological systems at little cost. A mathematical model trained on experimental or clinical data can be used to generate and evaluate hypotheses, to ask "what if" questions, and to perform in silico experiments to guide future experimentation and validation. Such models may help identify and provide insights into the mechanisms that drive changes in dynamic systems.
View Article and Find Full Text PDFAdoptive transfer of T cells that express a chimeric antigen receptor (CAR) is an approved immunotherapy that may be curative for some hematological cancers. To better understand the therapeutic mechanism of action, we systematically analyzed CAR signaling in human primary T cells by mass spectrometry. When we compared the interactomes and the signaling pathways activated by distinct CAR-T cells that shared the same antigen-binding domain but differed in their intracellular domains and their in vivo antitumor efficacy, we found that only second-generation CARs induced the expression of a constitutively phosphorylated form of CD3ζ that resembled the endogenous species.
View Article and Find Full Text PDFIn February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System (CNS) Metastases in Tampa, Florida. In this white paper, we outline the current status of basic science, translational, and clinical research into melanoma brain metastasis development and therapeutic management. We further outline the important challenges that remain for the field and the critical barriers that need to be overcome for continued progress to be made in this clinically difficult area.
View Article and Find Full Text PDFChimeric antigen receptors (CARs) have an antigen-binding domain fused to transmembrane, costimulatory, and CD3ζ domains. Two CARs with regulatory approval include a CD28 or 4-1BB costimulatory domain. While both CARs achieve similar clinical outcomes, biologic differences have become apparent but not completely understood.
View Article and Find Full Text PDFThe recent years have seen significant progress in the development of systemic therapies to treat patients with advanced melanoma. Use of these new treatment modalities, which include immune checkpoint inhibitors and small molecule BRAF inhibitors, lead to increased overall survival and better outcomes. Although revolutionary, these therapies are often less effective against melanoma brain metastases, and frequently the CNS is the major site of treatment failure.
View Article and Find Full Text PDFCancer immunotherapies are dramatically reshaping the clinical management of oncologic patients. For many of these therapies, the guidelines for administration, monitoring, and management of associated toxicities are still being established. This is especially relevant for adoptively transferred, genetically-modified T cells, which have unique pharmacokinetic properties, due to their ability to replicate and persist long-term, following a single administration.
View Article and Find Full Text PDFAfter decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority.
View Article and Find Full Text PDF