Antibodies are essential to immune homeostasis due to their roles in neutralizing pathogenic agents. However, failures in central and peripheral checkpoints that eliminate autoreactive B cells can undermine self-tolerance and generate autoantibodies that mistakenly target self-antigens, leading to inflammation and autoimmune diseases. While autoantibodies are well-studied in autoimmune and in some communicable diseases, their roles in chronic conditions, such as obesity and aging, are less understood.
View Article and Find Full Text PDFCells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFChronic inflammation is considered a hallmark of aging. In a recent issue of Nature, Widjaja et al. examined genetic and pharmacologic inhibition of interleukin (IL)-11 on aging pathology and found that inhibiting IL-11 signaling increases lifespan and healthspan in mice.
View Article and Find Full Text PDFTelomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models.
View Article and Find Full Text PDFMicrogravity is associated with immunological dysfunction, though the mechanisms are poorly understood. Here, using single-cell analysis of human peripheral blood mononuclear cells (PBMCs) exposed to short term (25 hours) simulated microgravity, we characterize altered genes and pathways at basal and stimulated states with a Toll-like Receptor-7/8 agonist. We validate single-cell analysis by RNA sequencing and super-resolution microscopy, and against data from the Inspiration-4 (I4) mission, JAXA (Cell-Free Epigenome) mission, Twins study, and spleens from mice on the International Space Station.
View Article and Find Full Text PDFThe recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews.
View Article and Find Full Text PDFLipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis. Yet, how lipid loading modulates Mφ inflammatory responses remains unclear. We endeavored to gain mechanistic insights into how pre-loading with free cholesterol modulates Mφ metabolism upon LPS-induced TLR4 signaling.
View Article and Find Full Text PDFThe accumulation of lipid and the formation of macrophage foam cells is a hallmark of atherosclerosis, a chronic inflammatory disease. To better understand the role of macrophage lipid accumulation in inflammation during atherogenesis, we studied early molecular events that follow the accumulation of oxidized low-density lipoprotein (oxLDL) in cultured mouse macrophages. We previously showed that oxLDL accumulation downregulates the inflammatory response in conjunction with downregulation of late-phase glycolysis.
View Article and Find Full Text PDFLipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis, yet how lipid accumulation affects inflammatory responses through rewiring of Mφ metabolism is poorly understood. We modeled lipid accumulation in cultured wild-type mouse thioglycolate-elicited peritoneal Mφs and bone marrow-derived Mφs with conditional (Lyz2-Cre) or complete genetic deficiency of Vhl, Hif1a, Nos2, and Nfe2l2. Transfection studies employed RAW264.
View Article and Find Full Text PDFBackground: Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty.
View Article and Find Full Text PDFCachexia is a major cause of death in cancer and leads to wasting of cardiac and skeletal muscle, as well as adipose tissue. Various cellular and soluble mediators have been postulated in driving cachexia; however, the specific mechanisms behind this muscle wasting remain poorly understood. In this study, we found polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to be critical for the development of cancer-associated cachexia.
View Article and Find Full Text PDFAlterations in the microbiome correlate with improved metabolism in patients following bariatric surgery. While fecal microbiota transplantation (FMT) from obese patients into germ-free (GF) mice has suggested a significant role of the gut microbiome in metabolic improvements following bariatric surgery, causality remains to be confirmed. Here, we perform paired FMT from the same obese patients (BMI > 40; four patients), pre- and 1 or 6 months post-Roux-en-Y gastric bypass (RYGB) surgery, into Western diet-fed GF mice.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2023
In January 2022, a group of experts came together to discuss current perspectives and future directions in nutritional immunology as part of a symposium organized by the Canadian Nutrition Society. Objectives included (1) creating an understanding of the complex interplay between diet and the immune system from infants through to older adults, (2) illustrating the role of micronutrients that are vital to the immune system, (3) learning about current research comparing the impact of various dietary patterns and novel approaches to reduce inflammation, autoimmune conditions, allergies, and infections, and (4) discussing select dietary recommendations aimed at improving disease-specific immune function. The aims of this review are to summarize the symposium and to identify key areas of research that require additional exploration to better understand the dynamic relationship between nutrition and immune function.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
May 2023
Background & Aims: Fiber-rich foods promote health, but mechanisms by which they do so remain poorly defined. Screening fiber types, in mice, revealed psyllium had unique ability to ameliorate 2 chronic inflammatory states, namely, metabolic syndrome and colitis. We sought to determine the mechanism of action of the latter.
View Article and Find Full Text PDFAging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq ( = 72) and single-nuclei RNA-seq ( = 17).
View Article and Find Full Text PDFFront Cell Dev Biol
November 2022
Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses activation of T cells, and inducing tolerance under physiological conditions.
View Article and Find Full Text PDFB cells are associated with the development of obesity-associated metabolic disease. Recently, Hägglöf, Vanz, et al. identified a novel obesity-related subset of B cells that are demarcated by the transcription factor T-bet and their pathogenic ability to worsen metabolic disease outcomes.
View Article and Find Full Text PDFImmune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells.
View Article and Find Full Text PDFObesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases.
View Article and Find Full Text PDFThe mechanical properties of polydimethylsiloxane hydrogels can be tuned to mimic physiological tensions, an underappreciated environmental parameter in immunology studies. We describe a workflow to prepare PDMS-coated tissue culture plates with biologically relevant substrate stiffness, and the use of these hydrogel plates to condition isolated primary splenic CD11c+ dendritic cells (DC). Finally, we suggest downstream applications to study the impact of substrate stiffness on DC function and metabolism.
View Article and Find Full Text PDF