Publications by authors named "Daniel A Rivera"

Article Synopsis
  • In partial onset epilepsy, seizures start in specific brain areas and can become resistant to medication, making neurosurgery a key treatment option that risks neurological deficits.
  • A study on mice with focal neocortical epilepsy applied precise cuts using femtosecond laser pulses around the seizure focus, significantly reducing seizure frequency by 87% and limiting the spread of seizures.
  • The surgical cuts led to minimal collateral damage and did not impair motor skills in reaching tasks, indicating potential for this method as an effective neurosurgical strategy for treating refractory focal epilepsy.
View Article and Find Full Text PDF

Small animal studies in biomedical research often require anesthesia to reduce pain or stress experienced by research animals and to minimize motion artifact during imaging or other measurements. Anesthetized animals must be closely monitored for the safety of the animals and to prevent unintended effects of altered physiology on experimental outcomes. Many currently available monitoring devices are expensive, invasive, or interfere with experimental design.

View Article and Find Full Text PDF

Laser speckle contrast imaging (LSCI) is a widefield imaging technique that enables high spatiotemporal resolution measurement of blood flow. Laser coherence, optical aberrations, and static scattering effects restrict LSCI to relative and qualitative measurements. Multi-exposure speckle imaging (MESI) is a quantitative extension of LSCI that accounts for these factors but has been limited to post-acquisition analysis due to long data processing times.

View Article and Find Full Text PDF

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments.

View Article and Find Full Text PDF

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments.

View Article and Find Full Text PDF

Laser speckle contrast imaging (LSCI) is a widefield imaging technique that enables high spatiotemporal resolution measurement of blood flow. Laser coherence, optical aberrations, and static scattering effects restrict LSCI to relative and qualitative measurements. Multi-exposure speckle imaging (MESI) is a quantitative extension of LSCI that accounts for these factors but has been limited to post-acquisition analysis due to long data processing times.

View Article and Find Full Text PDF

Optical imaging of wholemount tissue samples provides greater understanding of structure-function relationships as the architecture of these specimens is generally well preserved. However, difficulties arise when attempting to stitch together images of multiple regions of larger, oddly shaped specimens. These difficulties include (1) maintaining consistent signal-to-noise ratios when the overlying sample surface is uneven, (2) ensuring sample viability when live samples are required, and (3) stabilizing the specimen in a fixed position in a flowing medium without distorting the tissue sample.

View Article and Find Full Text PDF

Cerebral blood flow (CBF) reductions in Alzheimer's disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer's disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks.

View Article and Find Full Text PDF