Publications by authors named "Daniel A Riccio"

Article Synopsis
  • Molluscum contagiosum (MC) is a common skin infection in children caused by the highly contagious molluscum contagiosum poxvirus (MCV), with limited treatment options available.
  • Researchers are investigating berdazimer sodium, a new topical treatment, to assess its antiviral properties against poxviruses using vaccinia virus as a model since MCV can't be studied directly in the lab.
  • The study shows that berdazimer sodium not only reduces virus replication but also interferes with early gene expression in MCV-infected cells, offering a possible explanation for its effectiveness in treating MC.
View Article and Find Full Text PDF

Sickle red blood cells (SSRBCs) are adherent to the endothelium, activate leukocyte adhesion, and are deficient in bioactive nitric oxide (NO) adducts such as -nitrosothiols (SNOs), with reduced ability to induce vasodilation in response to hypoxia. All these pathophysiologic characteristics promote vascular occlusion, the hallmark of sickle cell disease (SCD). Loading hypoxic SSRBCs in vitro with NO followed by reoxygenation significantly decreased epinephrine-activated SSRBC adhesion to the endothelium, the ability of activated SSRBCs to mediate leukocyte adhesion in vitro and vessel obstruction in vivo.

View Article and Find Full Text PDF

Background: Nitric oxide (NO) and its derivatives play important roles in the cardiopulmonary transition upon birth and in other oxygen-sensitive developmental milestones. One mechanism for the coupling of oxygen sensing and signaling by NO species is via the formation of an S-nitrosothiol (SNO) moiety on hemoglobin (Hb, forming SNO-Hb) and its release from the red blood cell in hypoxia. Although SNO-Hb formed on adult-type Hb (HbA, forming SNO-HbA) has been documented in physiological and pathophysiological human states, the fetal variant, SNO-HbF, has thus far not been isolated or characterized in human blood.

View Article and Find Full Text PDF

Background: Transfusion of red blood cells (RBCs) is a frequent health care practice. However, unfavorable consequences may occur from transfusions of stored RBCs and are associated with RBC changes during storage. Loss of S-nitrosohemoglobin (SNO-Hb) and other S-nitrosothiols (SNOs) during storage is implicated as a detriment to transfusion efficacy.

View Article and Find Full Text PDF

Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.

View Article and Find Full Text PDF

The roles of nitric oxide (NO) in physiology and pathophysiology merit the use of NO as a therapeutic for certain biomedical applications. Unfortunately, limited NO payloads, too rapid NO release, and the lack of targeted NO delivery have hindered the clinical utility of NO gas and low molecular weight NO donor compounds. A wide-variety of NO-releasing macromolecular scaffolds has thus been developed to improve NO's pharmacological potential.

View Article and Find Full Text PDF

While much research has been directed to harnessing the antimicrobial properties of exogenous NO, the possibility of bacteria developing resistance to such therapy has not been thoroughly studied. Herein, we evaluate potential NO resistance using spontaneous and serial passage mutagenesis assays. Specifically, Staphylococcus aureus, Methicillin-resistant S.

View Article and Find Full Text PDF

The synthesis of a tertiary thiol-bearing silane precursor (i.e., N-acetyl penicillamine propyltrimethoxysilane or NAPTMS) to enable enhanced NO storage stability at physiological temperature is described.

View Article and Find Full Text PDF

The concentration of S-nitrosothiols (RSNOs), endogenous transporters of the signaling molecule nitric oxide (NO), fluctuate greatly in physiology often as a function of disease state. RSNOs may be measured indirectly by cleaving the S-N bond and monitoring the liberated NO. While ultraviolet photolysis and reductive-based cleavage both decompose RSNOs to NO, poor selectivity and the need for additional reagents preclude their utility clinically.

View Article and Find Full Text PDF

Despite clear evidence that polymeric nitric oxide (NO) release coatings reduce the foreign body response (FBR) and may thus improve the analytical performance of in vivo continuous glucose monitoring devices when used as sensor membranes, the compatibility of the NO release chemistry with that required for enzymatic glucose sensing remains unclear. Herein, we describe the fabrication and characterization of NO-releasing polyurethane sensor membranes using NO donor-modified silica vehicles embedded within the polymer. In addition to demonstrating tunable NO release as a function of the NO donor silica scaffold and polymer compositions and concentrations, we describe the impact of the NO release vehicle and its release kinetics on glucose sensor performance.

View Article and Find Full Text PDF

We report the synthesis of S-nitrosothiol-modified silica particles capable of nitric oxide (NO) release. The thiol precursor modification to form S-nitrosothiol NO donors was introduced into the silica network via co-condensation of mercaptosilane and alkoxysilane precursors. Both the concentrations of reactants (i.

View Article and Find Full Text PDF

The synthesis, material characterization, and in vitro biocompatibility of S-nitrosothiol (RSNO)-modified xerogels are described. Thiol-functionalized xerogel films were formed by hydrolysis and co-condensation of 3-mercaptopropyltrimethoxysilane (MPTMS) and methyltrimethoxysilane (MTMOS) sol-gel precursors at varying concentrations. Subsequent thiol nitrosation via acidified nitrite produced RSNO-modified xerogels capable of generating nitric oxide (NO) for up to 2 weeks under physiological conditions.

View Article and Find Full Text PDF

Xerogel sensing films were synthesized via sol-gel chemistry were used to fabricate optical nitroxyl (HNO) sensors [corrected] Selective detection of HNO in solution was achieved by monitoring the rates of manganese(III) meso-tetrakis(4-sulfonatophenyl) porphyrinate (MnIIITPPS) reductive nitrosylation in the anaerobic interior of aminoalkoxysilane-derived xerogel films. Nitroxyl permeability in sensor films deposited in round-bottom 96-well plates was enhanced via incorporation of trimethoxysilyl-terminated poly(amidoamine-organosilicon) dendrimers in the xerogel network. The selectivity of MnIIITPPS for HNO, the overall sensitivity, and the working dynamic range of the resulting sensors were characterized.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionttbidud8puhvjvoqbu6m7f8lc1otu16l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once