The unique layer-stacking in two-dimensional (2D) van der Waals materials facilitates the formation of nearly degenerate phases of matter and opens novel routes for the design of low-power, reconfigurable functional materials. Electrochemical ion intercalation between stacked layers offers a promising approach to stabilize bulk metastable phases and to explore the effects of extreme carrier doping and strain. However, in situ characterization methods to study the structural evolution and dynamical functional properties of these intercalated materials remains limited.
View Article and Find Full Text PDFSolid-state nuclear magnetic resonance (SSNMR) and nuclear quadrupole resonance (NQR) spectra provide detailed information about the electronic and atomic structure of solids. Modern methods such as density functional theory (DFT) can be used to calculate NMR and NQR spectra from first-principles, providing a meaningful avenue to connect theory and experiment. Prediction of SSNMR and NQR spectra from DFT relies on accurate calculation of the electric field gradient (EFG) tensor associated with the potential of electrons at the nuclear centers.
View Article and Find Full Text PDFTantalum pentoxide (TaO) is among the most technologically useful heavy transition metal oxides. Unfortunately, its crystal structure is the subject of long-standing and unresolved disagreement. Among other consequences, this uncertainty has made it impossible to formulate a robust high pressure equation of state for TaO.
View Article and Find Full Text PDFThe effect of ionic disorder on the principal Hugoniot is investigated using multiple scattering theory to very high pressure (Gbar). Calculations using molecular dynamics to simulate ionic disorder are compared to those with a fixed crystal lattice, for both carbon and aluminum. For the range of conditions considered here we find that ionic disorder has a relatively minor influence.
View Article and Find Full Text PDFOn-chip dynamic strain engineering requires efficient micro-actuators that can generate large in-plane strains. Inorganic electrochemical actuators are unique in that they are driven by low voltages (≈1 V) and produce considerable strains (≈1%). However, actuation speed and efficiency are limited by mass transport of ions.
View Article and Find Full Text PDFTwo-dimensional (2D) materials derived from van der Waals (vdW)-bonded layered crystals have been the subject of considerable research focus, but their one-dimensional (1D) analogues have received less attention. These bulk crystals consist of covalently bonded multiatom atomic chains with weak van der Waals bonds between adjacent chains. Using density-functional-theory-based methods, we find the binding energies of several 1D families of materials to be within typical exfoliation ranges possible for 2D materials.
View Article and Find Full Text PDFTransition-metal dichalcogenides (TMDs) exist in various crystal structures with semiconducting, semi-metallic, and metallic properties. The dynamic control of these phases is of immediate interest for next-generation electronics such as phase change memories. Of the binary Mo and W-based TMDs, MoTe is attractive for electronic applications because it has the lowest energy difference (40 meV) between the semiconducting (2H) and semi-metallic (1T') phases, allowing for MoTe phase change by electrostatic doping.
View Article and Find Full Text PDFIntegration schemes are implemented with a plane-wave basis in the context of real-time time-dependent density functional theory. Crank-Nicolson methods and three classes of explicit integration schemes are explored and assessed in terms of their accuracy and stability properties. Within the framework of plane-wave density functional theory, a graphene monolayer system is used to investigate the error, stability, and serial computational cost of these methods.
View Article and Find Full Text PDFIn principle, a nearly endless number of unique van der Waals heterostructures can be created through the vertical stacking of two-dimensional (2D) materials, resulting in unprecedented potential for material design. However, this widely employed synthetic method for generating van der Waals heterostructures is slow, imprecise, and prone to introducing interlayer contaminants when compared with synthesis methods that are scalable to industrially relevant scales. Herein, we study the properties of a new class of layered bulk inorganic materials that has recently been reported that we call assembly-free bulk layered inorganic heterostructures, wherein the individual layers are of dissimilar chemical composition, distinguishing them from commonly studied layered materials.
View Article and Find Full Text PDFAlloying plays a central role in tailoring the material properties of 2D transition-metal dichalcogenides (TMDs). However, despite widespread reports, the details of the alloying mechanism in 2D TMDs have remained largely unknown and are yet to be further explored. Here, we combine a set of systematic experiments with ab initio density functional theory (DFT) calculations to unravel a defect-mediated mechanism for the alloying of monolayer TMD crystals.
View Article and Find Full Text PDF