Publications by authors named "Daniel A Rappolee"

Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two "space embryo" studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation.

View Article and Find Full Text PDF

Background: Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.

View Article and Find Full Text PDF

We discuss pathological epigenetic events that are reversible (PEERs). A recent study by Poganik and colleagues showed that severe stress in mice and humans transiently elevates biological age of several tissues, and this transient age increase is reversible when the stress is removed. These studies suggest new strategies for reversing normal aging.

View Article and Find Full Text PDF

In this review, advances in the understanding of epigenetic reprogramming from fertilization to the development of primordial germline cells in a mouse and embryo are discussed. To gain insights into the molecular underpinnings of various diseases, it is essential to comprehend the intricate interplay between genetic, epigenetic, and environmental factors during cellular reprogramming and embryonic differentiation. An increasing range of diseases, including cancer and developmental disorders, have been linked to alterations in DNA methylation and histone modifications.

View Article and Find Full Text PDF

Both uterine endometrium and embryo contribute to implantation success. However, their relative role in the implantation success is still a matter for debate, as are the roles of endometrial receptivity analysis (ERA), endometrial scratch (ES), endometrial microbiome, and intrauterine or intravenous measures that are currently advocated to improve the implantation success. There is insufficient evidence to suggest that the endometrium is more important than the embryo in determining the implantation success and the utility of these measures, especially when euploid embryos are transferred is limited.

View Article and Find Full Text PDF

A problem in developmental toxicology is the massive loss of life from fertilization through gastrulation, and the surprising lack of knowledge of causes of miscarriage. Half to two-thirds of embryos are lost, and environmental and genetic causes are nearly equal. Simply put, it can be inferred that this is a difficult period for normal embryos, but that environmental stresses may cause homeostatic responses that move from adaptive to maladaptive with increasing exposures.

View Article and Find Full Text PDF

Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase.

View Article and Find Full Text PDF

Fluorescent ubiquitination-based cell cycle indicator (FUCCI) embryonic stem cells (ESCs), which fluoresce green during the S-G2-M phases, generate an S-shaped curve for the accumulation of cells during normal stemness (NS) culture with leukemia-inhibitory factor (LIF). Since it was hypothesized that a culture of ESCs was heterogeneous in the cell cycle, it was expected that increased S-G2-M-phases of the cell cycle would make an S-shaped curve parallel to the accumulation curve. Unexpectedly, it was observed that the fraction of FUCCI ESCs in green decreases over time to a nadir at ∼24 h after previous feeding and then rapidly enters S-G2-M-phases after medium change.

View Article and Find Full Text PDF

Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND).

View Article and Find Full Text PDF

Phthalates are esters of phthalic acid which are used in cosmetics and other daily personal care products. They are also used in polyvinyl chloride (PVC) plastics to increase durability and plasticity. Phthalates are not present in plastics by covalent bonds and thus can easily leach into the environment and enter the human body by dermal absorption, ingestion, or inhalation.

View Article and Find Full Text PDF

Mouse Embryonic Stem Cells (mESCs) are unique in their self-renewal and pluripotency. Hypothetically, mESCs model gestational stress effects or stresses of in vitro fertilization/assisted reproductive technologies or drug/environmental exposures that endanger embryos. Testing mESCs stress responses should diminish and expedite in vivo embryo screening.

View Article and Find Full Text PDF

Here we examine recent evidence suggesting that many drugs and diet supplements (DS), experimental AMP-activated protein kinase (AMPK) agonists as well as energy-depleting stress, lead to decreases in anabolism, growth or proliferation, and potency of cultured oocytes, embryos, and stem cells in an AMPK-dependent manner. Surprising data for DS and drugs that have some activity as AMPK agonists in in vitro experiments show possible toxicity. This needs to be balanced against a preponderance of evidence in vivo that these drugs and DS are beneficial for reproduction.

View Article and Find Full Text PDF

Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears.

View Article and Find Full Text PDF

This review focuses on hypoxic stress and its effects on the placental lineage and the earliest differentiation events in mouse and human placental trophoblast stem cells (TSCs). Although the placenta is a decidual organ at the end of pregnancy, its earliest rapid growth and function at the start of pregnancy precedes and supports growth and function of the embryo. Earliest function requires that TSCs differentiate, however, "hypoxia" supports rapid growth, but not differentiation of TSCs.

View Article and Find Full Text PDF

Purpose: This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos.

Methods: Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.

View Article and Find Full Text PDF

This review is a response to the Fellows Forum on testing 2% oxygen for best culture of human blastocysts (J Ass Reprod Gen 34:303-8, 1; J Ass Reprod Gen 34:309-14, 2) prior to embryo transfer. It is a general analysis in support of the position that an understanding of stem cell physiology and responses to oxygen are necessary for optimization of blastocyst culture in IVF and to enhance reproductive success in fertile women.

View Article and Find Full Text PDF

Previous studies showed that cultured mouse trophoblast stem cells (mTSCs) have the most rapid proliferation, normal maintenance of stemness/potency, the least spontaneous differentiation, and the lowest level of stress-activated protein kinase (SAPK) when incubated at 2% O rather than at the traditional 20% O or hypoxic (0.5% and 0% O) conditions. Switching from 2% O induced fast SAPK responses.

View Article and Find Full Text PDF

Hypoxic, hyperosmotic, and genotoxic stress slow mouse trophoblast stem cell (mTSC) proliferation, decrease potency/stemness, and increase differentiation. Previous reports suggest a period of reversibility in stress-induced mTSC differentiation. Here we show that hypoxic stress at 0.

View Article and Find Full Text PDF

Purpose: The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development.

Methods: The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g.

View Article and Find Full Text PDF

Purpose: The objective of this study is to investigate the effect of 2, 5, and 20 % O2 on post-thaw day 3 human embryo culture until blastocyst stage.

Methods: One hundred fifty-five day 3 human embryos were used. One hundred twenty out of 155 embryos were recovered after thawing.

View Article and Find Full Text PDF

Assays for embryonic stem cells (ESCs) of the blastocyst are needed to quantify stress-induced decreases of potent subpopulations. High-throughput screens (HTSs) of stressed ESCs quantify embryonic stress, diminishing laboratory animal needs. Normal or stress-induced ESC differentiation is marked by Rex1 potency factor loss.

View Article and Find Full Text PDF

Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone.

View Article and Find Full Text PDF

Dysfunctional stem cell differentiation into placental lineages is associated with gestational diseases. Of the differentiated lineages available to trophoblast stem cells (TSC), elevated O2 and mitochondrial function are necessary to placental lineages at the maternal-placental surface and important in the etiology of preeclampsia. TSC lineage imbalance leads to embryonic failure during uterine implantation.

View Article and Find Full Text PDF

Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpbf9upeienkau3s1rp02vjn7h7g42unn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once