Publications by authors named "Daniel A Marad"

Galactose is a secondary fermentable sugar that requires specific regulatory and structural genes for its assimilation, which are under catabolite repression by glucose. When glucose is absent, the catabolic repression is attenuated, and the structural GAL genes are fully activated. In Saccharomyces cerevisiae, the GAL pathway is under selection in environments where galactose is present.

View Article and Find Full Text PDF

Identification of adaptive targets in experimental evolution typically relies on extensive replication and genetic reconstruction. An alternative approach is to directly assay all mutations in an evolved clone by generating pools of segregants that contain random combinations of evolved mutations. Here, we apply this method to 6 Saccharomyces cerevisiae clones isolated from 4 diploid populations that were clonally evolved for 2,000 generations in rich glucose medium.

View Article and Find Full Text PDF

Genome duplications are important evolutionary events that impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience whole-genome duplication (WGD). We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations.

View Article and Find Full Text PDF

Ploidy varies considerably in nature. However, our understanding of the impact of ploidy on adaptation is incomplete. Many microbial evolution experiments characterize adaptation in haploid organisms, but few focus on diploid organisms.

View Article and Find Full Text PDF