Publications by authors named "Daniel A Lee"

Over the past decade, zebrafish have emerged as a powerful model for the study of vertebrate sleep and wake behaviors. Experimental evidence has demonstrated behavioral, anatomical, genetic, and pharmacological conservation of sleep between zebrafish and mammals, suggesting that discoveries in zebrafish can inform our understanding of mammalian sleep. Here, we describe a protocol for performing sleep behavioral experiments in larval zebrafish, using a high-throughput video tracking system.

View Article and Find Full Text PDF

Although several sleep-regulating neuronal populations have been identified, little is known about how they interact with each other to control sleep/wake states. We previously identified neuropeptide VF (NPVF) and the hypothalamic neurons that produce it as a sleep-promoting system (Lee et al., 2017).

View Article and Find Full Text PDF
Article Synopsis
  • - The liver's ability to regenerate is hindered in severe injuries, as liver progenitor cells (LPCs) fail to differentiate effectively into hepatocytes, worsening chronic liver diseases through inflammation and fibrosis.
  • - Research using zebrafish models reveals that inhibiting the epidermal growth factor receptor (EGFR) signaling pathway can enhance LPC differentiation into hepatocytes by activating a specific signaling cascade (MEK-ERK-SOX9).
  • - The study suggests that targeting the EGFR-ERK-SOX9 pathway with EGFR inhibitors may offer a promising therapeutic strategy for improving liver recovery and advancing treatment options for patients with advanced liver disease.
View Article and Find Full Text PDF

Sleep is a cross-species phenomenon whose evolutionary and biological function remain poorly understood. Clinical and animal studies suggest that sleep disturbance is significantly associated with disruptions in protein homeostasis-or proteostasis-in the brain, but the mechanism of this link has not been explored. In the cell, the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) pathway modulates proteostasis by transiently inhibiting protein synthesis in response to proteostatic stress.

View Article and Find Full Text PDF

The genetic bases for most human sleep disorders and for variation in human sleep quantity and quality are largely unknown. Using the zebrafish, a diurnal vertebrate, to investigate the genetic regulation of sleep, we found that epidermal growth factor receptor (EGFR) signaling is necessary and sufficient for normal sleep levels and is required for the normal homeostatic response to sleep deprivation. We observed that EGFR signaling promotes sleep via mitogen-activated protein kinase/extracellular signal-regulated kinase and RFamide neuropeptide signaling and that it regulates RFamide neuropeptide expression and neuronal activity.

View Article and Find Full Text PDF

Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and -expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of -expressing neurons induces neuronal activity levels consistent with normal sleep.

View Article and Find Full Text PDF

Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal.

View Article and Find Full Text PDF

Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes.

View Article and Find Full Text PDF

The hypothalamus is the central regulator of a broad range of homeostatic and instinctive physiological processes, such as the sleep-wake cycle, food intake, and sexually dimorphic behaviors. These behaviors can be modified by various environmental and physiological cues, although the molecular and cellular mechanisms that mediate these effects remain poorly understood. Recently, it has become clear that both the juvenile and adult hypothalamus exhibit ongoing neurogenesis, which serve to modify homeostatic neural circuitry.

View Article and Find Full Text PDF

The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals.

View Article and Find Full Text PDF

During critical periods of development early in life, excessive or scarce nutritional environments can disrupt the development of central feeding and metabolic neural circuitry, leading to obesity and metabolic disorders in adulthood. A better understanding of the genetic networks that control the development of feeding and metabolic neural circuits, along with knowledge of how and where dietary signals disrupt this process, can serve as the basis for future therapies aimed at reversing the public health crisis that is now building as a result of the global obesity epidemic. This review of animal and human studies highlights recent insights into the molecular mechanisms that regulate the development of central feeding circuitries, the mechanisms by which gestational and early postnatal nutritional status affects this process, and approaches aimed at counteracting the deleterious effects of early over- and underfeeding.

View Article and Find Full Text PDF

Purpose: Published evidence on common ingredients of "energy drinks" and other dietary supplements widely used by consumers in hopes of enhancing athletic performance is reviewed.

Summary: Preworkout products- unregulated dietary supplements- typically contain "proprietary blends" of multiple ingredients, including caffeine, dimethylamylamine, creatine, arginine, β-alanine, taurine, and phosphates. While some dietary supplement labels instruct consumers to seek the advice of a health care professional before using the products, the labels usually do not disclose all ingredients or their precise amounts, and evidence to support the purported performance-enhancing benefits is generally lacking.

View Article and Find Full Text PDF

Zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs) have been shown to induce targeted mutations, but they have not been extensively tested in any animal model. Here, we describe a large-scale comparison of ZFN and TALEN mutagenicity in zebrafish. Using deep sequencing, we found that TALENs are significantly more likely to be mutagenic and induce an average of 10-fold more mutations than ZFNs.

View Article and Find Full Text PDF

Adult neurogenesis represents a striking example of structural plasticity in the mature brain. Research on adult mammalian neurogenesis today focuses almost exclusively on two areas: the subgranular zone (SGZ) in the dentate gyrus of the hippocampus, and the subventricular zone (SVZ) of the lateral ventricles. Numerous studies, however, have also reported adult neurogenesis in the hypothalamus, a brain structure that serves as a central homeostatic regulator of numerous physiological and behavioral functions, such as feeding, metabolism, body temperature, thirst, fatigue, aggression, sleep, circadian rhythms, and sexual behavior.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi 10.1016/j.ijdevneu.

View Article and Find Full Text PDF

Adult hypothalamic neurogenesis has recently been reported, but the cell of origin and the function of these newborn neurons are unknown. Using genetic fate mapping, we found that median eminence tanycytes generate newborn neurons. Blocking this neurogenesis altered the weight and metabolic activity of adult mice.

View Article and Find Full Text PDF

Mutation of rod photoreceptor-enriched transcription factors is a major cause of inherited blindness. We identified the orphan nuclear hormone receptor estrogen-related receptor beta (ERRbeta) as selectively expressed in rod photoreceptors. Overexpression of ERRbeta induces expression of rod-specific genes in retinas of wild-type as well as Nrl(-/-) mice, which lack rod photoreceptors.

View Article and Find Full Text PDF

The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points.

View Article and Find Full Text PDF