Publications by authors named "Daniel A Heinz"

Stimulus-driven gene expression is a ubiquitous feature of biological systems, allowing cells and organisms to adapt their function in a stimulus-driven manner. Neurons exhibit complex and heterogeneous activity-dependent gene expression, but many of the canonical mechanisms that transduce electrical activity into gene regulation are promiscuous and convergent. We discuss literature that describes mechanisms that drive activity-dependent gene expression with a focus on those that allow the nucleus to decode complex stimulus-features into appropriate transcriptional programs.

View Article and Find Full Text PDF

Experience-dependent expression of immediate-early gene transcription factors (IEG-TFs) can transiently change the transcriptome of active neurons and initiate persistent changes in cellular function. However, the impact of IEG-TFs on circuit connectivity and function is poorly understood. We investigate the specificity with which the IEG-TF NPAS4 governs experience-dependent changes in inhibitory synaptic input onto CA1 pyramidal neurons (PNs).

View Article and Find Full Text PDF

Phosphorylation of the μ-opioid receptor (MOR) is known as a key step in desensitization and internalization but the role in the development of long-term tolerance at the cellular level is not known. Viral expression of wild type (exWT) and mutant MORs, where all phosphorylation sites on the C-terminus (Total Phosphorylation Deficient (TPD)) were mutated to alanine, were examined in locus coeruleus neurons in a MOR knockout rat. Both receptors activated potassium conductance similar to endogenous receptors in wild type animals.

View Article and Find Full Text PDF