Publications by authors named "Daniel A Gorelick"

Nuclear receptors are important in normal physiology and disease. Physicians and scientists who study nuclear receptors organize and attend conferences and symposia devoted to foundational and translational nuclear receptor research, but the field lacks a platform for early-stage investigators and aspiring leaders. In 2019, Zeynep Madak-Erdogan, Rebecca Riggins, and Matthew Sikora founded Nuclear Receptor (NR) Interdisciplinary Meeting for Progress And Collaboration Together (IMPACT, https://nrimpact.

View Article and Find Full Text PDF

Androgens are classically thought to act through intracellular androgen receptors (AR/NR3C4), but they can also trigger non-genomic effects via membrane proteins. Although several membrane androgen receptors have been characterized in vitro, their functions in vivo remain unclear. Using a chemical-genetic screen in zebrafish, we found that GPRC6A, a G-protein-coupled receptor, mediates non-genomic androgen actions during embryonic development.

View Article and Find Full Text PDF

The initial step in estrogen-regulated transcription is the binding of a ligand to its cognate receptors, named estrogen receptors (ERα and ERβ). Phytochemicals present in foods and environment can compete with endogenous hormones to alter physiological responses. We screened 224 flavonoids in our engineered biosensor ERα and ERβ PRL-array cell lines to characterize their activity on several steps of the estrogen signaling pathway.

View Article and Find Full Text PDF

In this study we present an inducible biosensor model for the Estrogen Receptor Beta (ERβ), GFP-ERβ:PRL-HeLa, a single-cell-based high throughput (HT) assay that allows direct visualization and measurement of GFP-tagged ERβ binding to ER-specific DNA response elements (EREs), ERβ-induced chromatin remodeling, and monitor transcriptional alterations via mRNA fluorescence in situ hybridization for a prolactin (PRL)-dsRED2 reporter gene. The model was used to accurately (Z' = 0.58-0.

View Article and Find Full Text PDF

Mechanistic toxicology seeks to identify the molecular and cellular mechanisms by which toxicants exert their deleterious effects. One powerful approach is to generate mutations in genes that respond to a particular toxicant, and then test how such mutations change the effects of the toxicant. CRISPR is a rapid and versatile approach to generate mutations in cultured cells and in animal models.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that binds DNA and regulates genes in response to halogenated and polycyclic aromatic hydrocarbons. AHR also regulates the development and function of the liver and the immune system. In the canonical pathway, AHR binds a consensus DNA sequence, termed the xenobiotic response element (XRE), recruits protein coregulators, and regulates target gene expression.

View Article and Find Full Text PDF

During embryonic development, a subset of cells in the mesoderm germ layer are specified as hemato-vascular progenitor cells, which then differentiate into endothelial cells and hematopoietic stem and progenitor cells. In zebrafish, the transcription factor npas4l (cloche) is required for the specification of hemato-vascular progenitor cells. However, it is unclear whether npas4l is the sole factor at the top of the hemato-vascular specification cascade.

View Article and Find Full Text PDF

Proteins that contain basic helix-loop-helix (bHLH) and Per-Arnt-Sim motifs (PAS) function as transcription factors. bHLH-PAS proteins exhibit essential and diverse functions throughout the body, from cell specification and differentiation in embryonic development to the proper function of organs like the brain and liver in adulthood. bHLH-PAS proteins are divided into two classes, which form heterodimers to regulate transcription.

View Article and Find Full Text PDF

In vivo models to detect estrogenic compounds are very valuable for screening for endocrine disruptors. Here we describe the use of transgenic estrogen reporter zebrafish as an in vivo model for the identification of estrogenic properties of compounds. Live imaging of these transgenic fish provides knowledge of estrogen receptor specificity of different ligands as well as dynamics of estrogen signaling.

View Article and Find Full Text PDF

Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors.

View Article and Find Full Text PDF

Background And Aims: During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions.

View Article and Find Full Text PDF

Objective: Maternal folate (vitamin B9) status is the largest known modifier of neural tube defect risk, so we evaluated folate-related mechanisms of action for dolutegravir (DTG) developmental toxicity.

Design: Folate receptor 1 (FOLR1) was examined as a target for DTG developmental toxicity using protein and cellular interaction studies and an animal model.

Methods: FOLR1 competitive binding studies were used to test DTG for FOLR1 antagonism.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds environmental toxicants and regulates gene expression. AHR also regulates developmental processes, like craniofacial development and hematopoiesis, in the absence of environmental exposures. Zebrafish have 3 paralogs of AHR: ahr1a, ahr1b, and ahr2.

View Article and Find Full Text PDF

Background & Aims: Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis.

View Article and Find Full Text PDF

Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors α and β (ERα and ERβ) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERα and ERβ are required for normal ovary development and function. However, the degree to which GPER signaling contributes to ovary development and function is less well understood.

View Article and Find Full Text PDF

Androgens act through the nuclear androgen receptor (AR) to regulate gonad differentiation and development. In mice, AR is necessary for spermatogenesis, testis development, and formation of external genitalia in males and oocyte maturation in females. However, the extent to which these phenotypes are conserved in nonmammalian vertebrates is not well understood.

View Article and Find Full Text PDF

Estrogens act by binding to estrogen receptors alpha and beta (ERα, ERβ), ligand-dependent transcription factors that play crucial roles in sex differentiation, tumor growth and cardiovascular physiology. Estrogens also activate the G protein-coupled estrogen receptor (GPER), however the function of GPER in vivo is less well understood. Here we find that GPER is required for normal heart rate in zebrafish embryos.

View Article and Find Full Text PDF

To study the effects of environmental endocrine disruptor compounds (EDCs) on aquatic animals, embryos and larvae are typically incubated in water containing defined concentrations of EDCs. However, the amount of EDC uptake into the animal is often difficult to determine. Using radiolabeled estradiol ([H]E2), we previously developed a rapid, straightforward assay to measure estradiol uptake from water into zebrafish embryos and larvae.

View Article and Find Full Text PDF

Zebrafish are a powerful model system to assess the molecular and cellular effects of exposure to toxic chemicals during embryonic development. To study the effects of environmental endocrine disruptors, embryos and larvae are commonly exposed to supraphysiologic concentrations of these compounds in the water, but their bioavailability in zebrafish is largely unknown. One hypothesis is that supraphysiologic concentrations of estrogens in the water are required to achieve physiologic levels in vivo; however, this has not been directly tested.

View Article and Find Full Text PDF

In 2005, two groups independently discovered that the G protein-coupled receptor GPR30 binds estradiol in cultured cells and, in response, initiates intracellular signaling cascades Revankar et al. (2005), Thomas et al. (2005).

View Article and Find Full Text PDF

For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals.

View Article and Find Full Text PDF

In vivo models to detect estrogenic compounds are very valuable for screening for endocrine disruptors. Here we describe the use of transgenic estrogen reporter zebrafish as an in vivo model for identification of estrogenic properties of compounds. Live imaging of these transgenic fish provides knowledge of estrogen receptor specificity of different ligands as well as dynamics of estrogen signaling.

View Article and Find Full Text PDF

Zebrafish embryos are a powerful tool for large-scale screening of small molecules. Transgenic zebrafish that express fluorescent reporter proteins are frequently used to identify chemicals that modulate gene expression. Chemical screens that assay fluorescence in live zebrafish often rely on expensive, specialized equipment for high content screening.

View Article and Find Full Text PDF

Genetic control of hematopoietic stem and progenitor cell (HSPC) function is increasingly understood; however, less is known about the interactions specifying the embryonic hematopoietic niche. Here, we report that 17β-estradiol (E2) influences production of runx1+ HSPCs in the AGM region by antagonizing VEGF signaling and subsequent assignment of hemogenic endothelial (HE) identity. Exposure to exogenous E2 during vascular niche development significantly disrupted flk1+ vessel maturation, ephrinB2+ arterial identity, and specification of scl+ HE by decreasing expression of VEGFAa and downstream arterial Notch-pathway components; heat shock induction of VEGFAa/Notch rescued E2-mediated hematovascular defects.

View Article and Find Full Text PDF