Publications by authors named "Daniel A Friess"

Mangrove shoreline retreat or advance is a natural process in a mangrove delta. However, due to various natural and anthropogenic stressors, mangrove shoreline retreat is the second largest cause of mangrove loss globally. It is important to understand the scale at which mangrove shoreline changes are causing biophysical changes along the mangrove shorelines and, in turn, understand if certain biophysical characteristics can explain the changes along the shoreline.

View Article and Find Full Text PDF

The hydrological restoration of coastal wetlands is an emerging approach for mitigating and adapting to climate change and enhancing ecosystem services such as improved water quality and biodiversity. This paper synthesises current knowledge on selecting appropriate modelling approaches for hydrological restoration projects. The selection of a modelling approach is based on project-specific factors, such as costs, risks, and uncertainties, and aligns with the overall project objectives.

View Article and Find Full Text PDF

Mangrove forests are a highly productive ecosystem with important potential to offset anthropogenic greenhouse gas emissions. Mangroves are expected to respond differently to climate change compared to terrestrial forests owing to their location in the tidal environment and unique ecophysiological characteristics, but the magnitude of difference remains uncertain at the global scale. Here we use satellite observations to examine mean trends and interannual variability in the productivity of global mangrove forests and nearby terrestrial evergreen broadleaf forests from 2001 to 2020.

View Article and Find Full Text PDF

Carbon credits generated through jurisdictional-scale avoided deforestation projects require accurate estimates of deforestation emission baselines, but there are serious challenges to their robustness. We assessed the variability, accuracy, and uncertainty of baselining methods by applying sensitivity and variable importance analysis on a range of typically-used methods and parameters for 2,794 jurisdictions worldwide. The median jurisdiction's deforestation emission baseline varied by 171% (90% range: 87%-440%) of its mean, with a median forecast error of 0.

View Article and Find Full Text PDF

Coastal blue carbon ecosystems can be an important nature-based solution for mitigating climate change, when emphasis is given to their protection, management, and restoration. Globally, there has been a rapid increase in blue carbon research in the last few decades, with substantial investments on national scales by the European Union, the USA, Australia, Seychelles, and Belize. Blue carbon ecosystems in South and Southeast Asia are globally diverse, highly productive and could represent a global hotspot for carbon sequestration and storage.

View Article and Find Full Text PDF

Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers.

View Article and Find Full Text PDF

Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data.

View Article and Find Full Text PDF

Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that marsh sediment accretion increases in parity with sea level rise, seemingly confirming previously claimed marsh resilience.

View Article and Find Full Text PDF

There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability. Ambitious targets for their recovery can inspire public and private investment in conservation, but the expected outcomes of different protection and restoration strategies are unclear. We estimated potential recovery of mangroves and seagrass through gains in ecosystem extent to the year 2070 under a range of protection and restoration strategies implemented until the year 2050.

View Article and Find Full Text PDF

Mangrove restoration has become a popular strategy to ensure the critical functions and economic benefits of this ecosystem. This study conducts a meta-analysis of the peer-reviewed literature on the outcomes of mangrove restoration. On aggregate, restored mangroves provide higher ecosystem functions than unvegetated tidal flats but lower than natural mangrove stands (respectively RR' = 0.

View Article and Find Full Text PDF

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO sequestration.

View Article and Find Full Text PDF

Despite the outsized role of mangrove forests in sustaining biodiversity, ecosystem function, and local livelihoods, the protection of these vital habitats through blue carbon financing has been limited. Here, we quantify the extent of this missed conservation and financial opportunity, showing that the protection of ∼20% of the world's mangrove forests (2.6 Mha) can be funded through carbon financing.

View Article and Find Full Text PDF

Estuaries of Southeast Asia are increasingly impacted by land-cover changes and pollution. Here, our research objectives were to (1) determine the origins of nutrient loads along the Can Gio estuary (Vietnam) and (2) identify the processes that affect the nutrient pools during the monsoon. We constructed four 24-h time-series along the salinity gradient measuring nutrient concentrations and stable isotopes values.

View Article and Find Full Text PDF

Mangrove forests provide many ecosystem services but are among the world's most threatened ecosystems. Mangroves vary substantially according to their geomorphic and sedimentary setting; while several conceptual frameworks describe these settings, their spatial distribution has not been quantified. Here, we present a new global mangrove biophysical typology and show that, based on their 2016 extent, 40.

View Article and Find Full Text PDF

The cost-effective mitigation of climate change through nature-based carbon dioxide removal strategies has gained substantial policy attention. Inland and coastal wetlands (specifically boreal, temperate and tropical peatlands; tundra; floodplains; freshwater marshes; saltmarshes; and mangroves) are among the most efficient natural long-term carbon sinks. Yet, they also release methane (CH) that can offset the carbon they sequester.

View Article and Find Full Text PDF

Fragmentation is a major driver of ecosystem degradation, reducing the capacity of habitats to provide many important ecosystem services. Mangrove ecosystem services, such as erosion prevention, shoreline protection and mitigation of climate change (through carbon sequestration), depend on the size and arrangement of forest patches, but we know little about broad-scale patterns of mangrove forest fragmentation. Here we conduct a multi-scale analysis using global estimates of mangrove density and regional drivers of mangrove deforestation to map relationships between habitat loss and fragmentation.

View Article and Find Full Text PDF

Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area.

View Article and Find Full Text PDF

Friess et al. discuss the results of conservation efforts for mangrove forests in recent years.

View Article and Find Full Text PDF

Inclusion of ecosystem-based approaches in the governmental masterplan for tsunami mitigation in Palu, Indonesia may make the city a rare case study for ecological disaster risk reduction in tropical biodiversity hotspots. Such case studies are a key pillar of the United Nations (UN) Sendai Framework to protect coastal societies globally.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available.

View Article and Find Full Text PDF

The term Blue Carbon (BC) was first coined a decade ago to describe the disproportionately large contribution of coastal vegetated ecosystems to global carbon sequestration. The role of BC in climate change mitigation and adaptation has now reached international prominence. To help prioritise future research, we assembled leading experts in the field to agree upon the top-ten pending questions in BC science.

View Article and Find Full Text PDF