The chromosomes of the domestic pig () are known to be prone to reciprocal chromosome translocations and other balanced chromosome rearrangements with concomitant fertility impairment of carriers. In response to the remarkable prevalence of chromosome rearrangements in swine herds, clinical cytogenetics laboratories have been established in several countries in order to screen young boars for chromosome rearrangements prior to service. At present, clinical cytogenetics laboratories typically apply classical cytogenetics techniques such as giemsa-trypsin (GTG)-banding to produce high-quality karyotypes and reveal large-scale chromosome ectopic exchanges.
View Article and Find Full Text PDFIn the routine commercial karyotype analysis on 5,481 boars, we identified 32 carriers of mosaic reciprocal translocations, half of which were carrying a specific recurrent translocation, mos t(7;9). An additional 7 mosaic translocations were identified through lymphocyte karyotype analysis from parents and relatives of mosaic carriers (n = 45), a control group of non-carrier boars (n = 73), and a mitogen assessment study (n = 20), bringing the total number of mosaic carriers to 39 cases. Mosaic translocations in all carriers were recognized to be confined to hematopoietic cells as no translocations were identified in fibroblasts cells of the carriers.
View Article and Find Full Text PDFIn the domestic horse; failure of normal masculinization and virilization due to deficiency of androgenic action leads to a specific disorder of sexual development known as equine androgen insensitivity syndrome (AIS). Affected individuals appear to demonstrate an incoherency between their genetic sex and sexual phenotype; i.e.
View Article and Find Full Text PDFBalanced chromosome rearrangements are one of the main etiological factors contributing to hypoprolificacy in the domestic pig. Amongst domestic animals, the pig is considered to have the highest prevalence of chromosome rearrangements. To date over 200 unique chromosome rearrangements have been identified.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are an attractive cell source for regenerative medicine and the development of therapies, as they can proliferate indefinitely under defined conditions and differentiate into any cell type in the body. Large-scale expansion of cells is limited in adherent culture, making it difficult to obtain adequate cell numbers for research. It has been previously shown that stirred suspension bioreactors (SSBs) can be used to culture mouse and human stem cells.
View Article and Find Full Text PDFThe aim of the present work was to determine proliferation capacity, immunophenotype and genome integrity of mesenchymal stromal cells (MSCs) from horse umbilical cord blood (UCB) at passage stage 5 and 10. Passage 4 cryopreserved UCB-MSCs from six unrelated donors were evaluated. Immunophenotypic analysis of UCB-MSC revealed a cell identity consistent with equine MSC phenotype by high expression of CD90, CD44, CD29, and very low expression of CD4, CD11a/18, CD73, and MHC class I and II antigens.
View Article and Find Full Text PDFMeiotic sex chromosome silencing (MSCS) has been argued as a prerequisite for normal meiotic cell division progression during the synaptic prophase I stage. Furthermore, irregular asynapsis of autosomal axes at meiosis may be encompassing the lack of transcriptional activity normally observed for the X and Y sex chromosomes. Therefore, any chromosomal rearrangement compromising the normal mechanism of MSCS and/or the contrary, the normal meiotic transcriptional activity of autosomal chromosomes, may be observed as a meiotic and concomitant spermatogenesis arrest.
View Article and Find Full Text PDFTesticular feminization, an earlier term coined for describing a syndrome resulting from failure of masculinization of target organs by androgen secretions during embryo development, has been well documented not only in humans but also in the domestic horse. The pathology, actually referred to as androgen insensitivity syndrome (AIS), has been proposed to follow an X-linked recessive pattern of inheritance in some horse breeds already investigated. Affected individuals are characterized by a female phenotype but with a stallion genotype of 64,XY SRY+ constitution.
View Article and Find Full Text PDFFew sex-autosome chromosome abnormalities have been documented in domestic animal species. In humans, Y-autosome chromosome abnormalities may occur at a rate of 1/2,000 live births, whereas in the domestic pig only 2 Y-autosome reciprocal translocations have been previously described. During a routine cytogenetic screening of young boars, we identified a new Y-autosome translocation carrier, which after puberty showed semen devoid of sperm and testicular hypoplasia with spermatogenesis arrest.
View Article and Find Full Text PDFBackground: Structural chromosome abnormalities are well known as factors that reduce fertility rate in domestic pigs. According to large-scale national cytogenetic screening programs that are implemented in France, it is estimated that new chromosome abnormalities occur at a rate of 0.5 % in fertility-unproven boars.
View Article and Find Full Text PDFDisorders of sex development (DSD) have long been documented in domestic animal species including horses. However, there is only a single report of an androgen receptor (AR) mutation causative of such a DSD syndrome in a horse pedigree. Here, we present a new familial AR mutation in horses.
View Article and Find Full Text PDFWe previously reported the differentiation of cells derived from porcine female fetal skin into cells resembling germ cells and oocytes. A subpopulation of these cells expressed germ cell markers and formed aggregates resembling cumulus-oocyte complexes. Some of these aggregates extruded large oocyte-like cells (OLCs) that expressed markers consistent with those of oocytes.
View Article and Find Full Text PDFEmbryo-derived stem cells hold enormous potential for producing cell-based transplantation therapies, allowing high-throughput drug screening and delineating early embryonic development. However, potential clinical applications must first be tested for safety and efficacy in preclinical animal models. Due to physiological and genetic parity to humans, the domestic dog is widely used as a clinically relevant animal model for cardiovascular, neurodegenerative, orthopedic, and oncologic diseases.
View Article and Find Full Text PDF