Sustained delivery of protein therapeutics remains a largely unsolved problem across anatomic locations. Miniaturized devices that can provide sustained delivery of protein formulations have the potential to address this challenge via minimally invasive administration. In particular, methodologies that can optimize protein formulation independent of device manufacture have the greatest potential to provide a platform suitable for wide applications.
View Article and Find Full Text PDFPancreatic islet transplantation is a promising treatment for type I diabetes, which is a chronic autoimmune disease in which the host immune cells attack insulin-producing beta cells. The impact of this therapy is limited due to tissue availability and dependence on immunosuppressive drugs that prevent immune rejection of the transplanted cells. These issues can be solved by encapsulating stem cell-derived insulin-producing cells in an immunoprotective device.
View Article and Find Full Text PDFDrug Discov Today
August 2019
Topical eye-drop administration and intravitreal injections are the current standard for ocular drug delivery. However, patient adherence to the drug regimen and insufficient administration frequency are well-documented challenges to this field. In this review, we describe recent advances in intraocular implants designed to deliver therapeutics for months to years, to obviate the issues of patient adherence.
View Article and Find Full Text PDFDespite years of effort, sustained delivery of protein therapeutics remains an unmet need due to three primary challenges - dose, duration, and stability. The work presented here provides a design methodology for polycaprolactone reservoir-based thin film devices suitable for long-acting protein delivery to the back of the eye. First, the challenge of formulating highly concentrated protein in a device reservoir was addressed by improving stability with solubility-reducing excipients.
View Article and Find Full Text PDFObjective: Inflammation is a key driver of excessive neointimal hyperplasia within vein grafts. Recent work demonstrates that specialized proresolving lipid mediators biosynthesized from omega-3 polyunsaturated fatty acids, such as resolvin D1 (RvD1), actively orchestrate the process of inflammation resolution. We investigated the effects of local perivascular delivery of RvD1 in a rabbit vein graft model.
View Article and Find Full Text PDFEncapsulation of human embryonic stem-cell-differentiated beta cell clusters (hES-βC) holds great promise for cell replacement therapy for the treatment of diabetics without the need for chronic systemic immune suppression. Here, we demonstrate a nanoporous immunoprotective polymer thin film cell encapsulation device that can exclude immune molecules while allowing exchange of oxygen and nutrients necessary for in vitro and in vivo stem cell viability and function. Biocompatibility studies show the device promotes neovascular formation with limited foreign body response in vivo.
View Article and Find Full Text PDFCurrent administration of ranibizumab and other therapeutic macromolecules to the vitreous and retina carries ocular risks, a high patient treatment burden, and compliance barriers that can lead to suboptimal treatment. Here we introduce a device that produces sustained release of ranibizumab in the vitreous cavity over the course of several months. Composed of twin nanoporous polymer thin films surrounding a ranibizumab reservoir, these devices provide release of ranibizumab over 16 weeks in vitro and 12 weeks in vivo, without exhausting the initial drug payload.
View Article and Find Full Text PDFCell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices.
View Article and Find Full Text PDFThe identification of biomaterials that are well tolerated in the eye is important for the development of new ocular drug delivery devices and implants, and the application of micro- and nanoengineered devices to biomedical treatments is predicated on the long-term preservation within the target organ or tissue of the very small functional design elements. This study assesses the ocular tolerance and durability of micro- and nanostructured biopolymer thin films injected or implanted into the rabbit eye. Structured poly(caprolactone) (PCL) thin films were placed in adult rabbit eyes for survival studies, with serial ophthalmic examinations over 6 months.
View Article and Find Full Text PDFHerein long-term delivery of proteins from biodegradable thin film devices is demonstrated, where a nanostructured polymer membrane controls release. Protein was sealed between two poly(caprolactone) films, which generated the thin film devices. Protein release for 210 days was shown in vitro, and stable activity was established through 70 days with a model protein.
View Article and Find Full Text PDFCluster-size dependent behavior of pancreatic beta-cells has direct implications in islet transplantation therapy for type I diabetes treatment. Control over the cluster size enables evaluation of cluster-size-dependent function, ultimately leading to the production of beta-cell clusters with improved transplant efficacy. This work for the first time demonstrates the use of microcontact-printing-based cell patterning of discrete two- and three-dimensional clusters of pancreatic beta-cells.
View Article and Find Full Text PDFThis review focuses on current developments in the field of nanostructured bulk polymers and their application in bioengineering and therapeutic sciences. In contrast to well-established nanoscale materials, such as nanoparticles and nanofibers, bulk nanostructured polymers combine nanoscale structure in a macroscopic construct, which enables unique application of these materials. Contemporary fabrication and processing techniques capable of producing nanoporous polymer films are reviewed.
View Article and Find Full Text PDFWe demonstrate a glucose sensor based on an organic electrochemical transistor (OECT) in which the channel, source, drain, and gate electrodes are made from the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS). The OECT employs a ferrocene mediator to shuttle electrons between the enzyme glucose oxidase and a PEDOT:PSS gate electrode. The device can be fabricated using a one-layer patterning process and offers glucose detection down to the micromolar range, consistent with levels present in human saliva.
View Article and Find Full Text PDFElectronic devices primarily use electronic rather than ionic charge carriers. Using soft-contact lamination, we fabricated ionic junctions between two organic semiconductors with mobile anions and cations, respectively. Mobile ionic charge was successfully deployed to control the direction of electronic current flow in semiconductor devices.
View Article and Find Full Text PDFWe have used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and micro-Raman spectroscopy to identify a quenching species that is formed during operation of [Ru(bpy)3]2+ electroluminescent devices. We identify this performance-degrading product to be the oxo-bridged dimer [(bpy)2(H2O)RuORu(OH2)(bpy)2]4+ and show this dimer to be an effective quencher of device luminescence. This work is the first to detect a specific chemical degradation product formed during iTMC OLED operation.
View Article and Find Full Text PDF