Publications by authors named "Danica Zivkovic"

The specific molecular determinants that govern progenitor expansion and final compartment size in the myogenic lineage, either during gestation or during regenerative myogenesis, remain largely obscure. Recently, we retrieved d-asb11 from a zebrafish screen designed to identify gene products that are downregulated during embryogenesis upon terminal differentiation and identified it as a potential regulator of compartment size in the ectodermal lineage. A role in mesodermal derivatives remained, however, unexplored.

View Article and Find Full Text PDF

Nucleostemin (NS), a member of a family of nucleolar GTP-binding proteins, is highly expressed in proliferating cells such as stem and cancer cells and is involved in the control of cell cycle progression. Both depletion and overexpression of NS result in stabilization of the tumor suppressor p53 protein in vitro. Although it has been previously suggested that NS has p53-independent functions, these to date remain unknown.

View Article and Find Full Text PDF

Pontocerebellar hypoplasia (PCH) represents a group (PCH1-6) of neurodegenerative autosomal recessive disorders characterized by hypoplasia and/or atrophy of the cerebellum, hypoplasia of the ventral pons, progressive microcephaly and variable neocortical atrophy. The majority of PCH2 and PCH4 cases are caused by mutations in the TSEN54 gene; one of the four subunits comprising the tRNA-splicing endonuclease (TSEN) complex. We hypothesized that TSEN54 mutations act through a loss of function mechanism.

View Article and Find Full Text PDF

ECS (Elongin BC-Cul2/Cul5-SOCS-box protein) ubiquitin ligases recruit substrates to E2 ubiquitin-conjugating enzymes through a SOCS-box protein substrate receptor, an Elongin BC adaptor and a cullin (Cul2 or Cul5) scaffold which interacts with the RING protein. In vitro studies have shown that the conserved amino acid sequence of the cullin box in SOCS-box proteins is required for complex formation and function. However, the in vivo importance of cullin boxes has not been addressed.

View Article and Find Full Text PDF

Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/beta-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos, gain-of-Wnt/beta-catenin function results in unscheduled muscle progenitor proliferation, leading to slow and fast muscle hypertrophy accompanied by fast muscle degeneration.

View Article and Find Full Text PDF

The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish.

View Article and Find Full Text PDF

The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway. We examined the effects of an Apc1 loss-of-function mutation on retino-tectal axon pathfinding in zebrafish. In apc mutants, the retina is disorganized and optic nerves portray pathfinding defects at the optic chiasm and do not project properly to the tectum.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by amyloid-beta (Abeta) plaques and hyperphosphorylated tau accumulation. AD occurs sporadically (SAD), or is caused by hereditary missense mutations in the amyloid precursor protein (APP) or presenilin-1 and -2 (PSEN1 and PSEN2) genes, leading to early-onset familial AD (FAD). Accumulating evidence points towards a role for altered Wnt/beta-catenin-dependent signaling in the etiology of both forms of AD.

View Article and Find Full Text PDF

In canonical Delta-Notch signalling, expression of Delta activates Notch in neighbouring cells, leading to downregulation of Delta in these cells. This process of lateral inhibition results in selection of either Delta-signalling cells or Notch-signalling cells. Here we show that d-Asb11 is an important mediator of this lateral inhibition.

View Article and Find Full Text PDF

Previous studies have shown that Wnt signals, relayed through beta-catenin and T-cell factor 4 (Tcf4), are essential for the induction and maintenance of crypts in mice. We have now generated a tcf4 (tcf7l2) mutant zebrafish by reverse genetics. We first observe a phenotypic defect at 4 weeks post-fertilization (wpf), leading to death at about 6 wpf.

View Article and Find Full Text PDF

The developmentally important hedgehog (Hh) pathway is activated by binding of Hh to patched (Ptch1), releasing smoothened (Smo) and the downstream transcription factor glioma associated (Gli) from inhibition. The mechanism behind Ptch1-dependent Smo inhibition remains unresolved. We now show that by mixing Ptch1-transfected and Ptch1 small interfering RNA-transfected cells with Gli reporter cells, Ptch1 is capable of non-cell autonomous repression of Smo.

View Article and Find Full Text PDF

From a differential display designed to isolate genes that are down-regulated upon differentiation of the central nervous system in Danio rerio embryos, we isolated d-asb11 (ankyrin repeat and suppressor of cytokine signaling box-containing protein 11). Knockdown of the d-Asb11 protein altered the expression of neural precursor genes sox2 and sox3 and resulted in an initial relative increase in proneural cell numbers. This was reflected by neurogenin1 expansion followed by premature neuronal differentiation, as demonstrated by HuC labeling and resulting in reduced size of the definitive neuronal compartment.

View Article and Find Full Text PDF

Truncation of the tumour suppressor adenomatous polyposis coli (Apc) constitutively activates the Wnt/beta-catenin signalling pathway. Apc has a role in development: for example, embryos of mice with truncated Apc do not complete gastrulation. To understand this role more fully, we examined the effect of truncated Apc on zebrafish development.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans function in development and disease. They consist of a core protein with attached heparan sulfate chains that are altered by a series of carbohydrate-modifying enzymes and sulfotransferases. Here, we report on the identification and characterization of a gene encoding zebrafish heparan sulfate 6-O-sulfotransferase (hs6st) that shows high homology to other heparan sulfate 6-O-sulfotransferases.

View Article and Find Full Text PDF

Axin, APC, and the kinase GSK3 beta are part of a destruction complex that regulates the stability of the Wnt pathway effector beta-catenin. In C. elegans, several Wnt-controlled developmental processes have been described, but an Axin ortholog has not been found in the genome sequence and SGG-1/GSK3 beta, and the APC-related protein APR-1 have been shown to act in a positive, rather than negative fashion in Wnt signaling.

View Article and Find Full Text PDF

Receptor protein-tyrosine phosphatase alpha (RPTP alpha) is highly expressed in the developing retina of different species, but little is known about its function there. Here, we report that injection of antisense morpholinos in zebrafish embryos reduced RPTP alpha expression to almost nondetectable levels up to 3 days postfertilization (dpf). RPTP alpha was detectable again from 4 dpf onward.

View Article and Find Full Text PDF

The fertilized egg of the mollusc Lymnaea stagnalis generates a polarized current pattern as measured with the vibrating probe. Here we investigated the basis of these polar ionic currents. Ionic currents were measured around eggs during the second meiotic division after interference with cytokinesis.

View Article and Find Full Text PDF

InLymnaea stagnalis, mesoderm induction occurs at the 24-cell stage, when the apical tip of the macromere 3D establishes a close contact with a number of micromeres. Via its tip, the macromere 3D is supposed to receive an inductive signal from the micromeres, resulting in the determination of the mesodermal stem cell 4d at the next division. In view of the possibility that transcellular ionic currents might somehow be involved, either in the processes that bring about this particular configuration of blastomeres or in the induction process itself, we mapped the electric field around the embryo during the 24-cell stage, using a vibrating probe.

View Article and Find Full Text PDF

During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca-stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.

View Article and Find Full Text PDF

During extrusion of the first polar body in eggs ofLymnaea stagnalis andBithynia tentaculata a localized Ca /Mg ATPase activity was detected, using Ando's enzyme-cytochemical method for electron microscopy [Ando et al. (1981) Acta Histochem Cytochem 14:705-726]. The enzyme activity was distributed in a polar fashion, along the cytoplasmic face of the plasma membrane.

View Article and Find Full Text PDF