Publications by authors named "Danica Galonic Fujimori"

Article Synopsis
  • Epigenetic factors like KDM5A and KDM5B are linked to cancer and immune regulation, and researchers studied their impact on gene expression and chromatin structure by removing these proteins in cells.
  • Analysis showed a drop in specific gene expressions (KRAB-ZNF genes) when KDM5A or KDM5B were absent, while inhibition of their demethylase activity did not affect these genes as expected.
  • The study found that loss of KDM5A rapidly increases the expression of endogenous retroviruses, suggesting a role for KDM5A alongside the NuRD complex in controlling these viral elements, highlighting potential therapeutic strategies in targeting these proteins to enhance cancer treatments.
View Article and Find Full Text PDF

The antibiotics chloramphenicol (CHL) and oxazolidinones including linezolid (LZD) are known to inhibit mitochondrial translation. This can result in serious, potentially deadly, side effects when used therapeutically. Although the mechanism by which CHL and LZD inhibit bacterial ribosomes has been elucidated in detail, their mechanism of action against mitochondrial ribosomes has yet to be explored.

View Article and Find Full Text PDF

PHD fingers are a type of chromatin reader that primarily recognize chromatin as a function of lysine methylation state. Dysregulated PHD fingers are implicated in various human diseases, including acute myeloid leukemia. Targeting PHD fingers with small molecules is considered challenging as their histone tail binding pockets are often shallow and surface-exposed.

View Article and Find Full Text PDF

Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPS antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance.

View Article and Find Full Text PDF

Histone methylation, one of the most common histone modifications, has fundamental roles in regulating chromatin-based processes. Jumonji histone lysine demethylases (JMJC KDMs) influence regulation of gene transcription through both their demethylation and chromatin scaffolding functions. It has recently been demonstrated that dysregulation of JMJC KDMs contributes to pathogenesis and progression of several diseases, including cancer.

View Article and Find Full Text PDF

An under-explored target for SARS-CoV-2 is the -adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.

View Article and Find Full Text PDF

Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here.

View Article and Find Full Text PDF

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 demethylases have a number of accessory domains, two of which, ARID and PHD1, lie between the segments of the catalytic domain. KDM5C, which has a unique role in neural development, harbors a number of mutations adjacent to its accessory domains that cause X-linked intellectual disability (XLID).

View Article and Find Full Text PDF

Viruses use diverse tactics to hijack host cellular machineries to evade innate immune responses and maintain their life cycles. Being critical transcriptional regulators, human BET proteins are prominent targets of a growing number of viruses. The BET proteins associate with chromatin through the interaction of their bromodomains with acetylated histones, whereas the carboxy-terminal domains of these proteins contain docking sites for various human co-transcriptional regulators.

View Article and Find Full Text PDF

We previously identified two structurally related pyrazolone (compound 1) and pyridazine (compound 2) allosteric inhibitors of DNMT3A through screening of a small chemical library. Here, we show that these compounds bind and disrupt protein-protein interactions (PPIs) at the DNMT3A tetramer interface. This disruption is observed with distinct partner proteins and occurs even when the complexes are acting on DNA, which better reflects the cellular context.

View Article and Find Full Text PDF
Article Synopsis
  • - Inhibitors of BET proteins might seem like a good option for preventing SARS-CoV-2 because they lower levels of ACE2, but this strategy could backfire.
  • - Using BET inhibitors increases the severity of SARS-CoV-2 infections by reducing critical antiviral responses and interferon production, potentially leading to higher viral replication and mortality in infected cells and mice.
  • - The envelope (E) protein of SARS-CoV-2 has evolved to suppress interferon responses by targeting BET proteins, suggesting that treating with BET inhibitors could worsen outcomes instead of helping.
View Article and Find Full Text PDF

Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3-a trimethyllysine reader domain of histone demethylase KDM5A.

View Article and Find Full Text PDF

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. However, the molecular basis for context-specificity has not been elucidated.

View Article and Find Full Text PDF

Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (mA2503). Acquisition of results in resistance to eight classes of ribosome-targeting antibiotics.

View Article and Find Full Text PDF

Inhibitors of Bromodomain and Extra-terminal domain (BET) proteins are possible anti-SARS-CoV-2 prophylactics as they downregulate angiotensin-converting enzyme 2 (ACE2). Here, we show that BET proteins should not be inactivated therapeutically as they are critical antiviral factors at the post-entry level. Knockouts of BRD3 or BRD4 in cells overexpressing ACE2 exacerbate SARS-CoV-2 infection; the same is observed when cells with endogenous ACE2 expression are treated with BET inhibitors during infection, and not before.

View Article and Find Full Text PDF

The family of radical SAM RNA-methylating enzymes comprises a large group of proteins that contains only a few functionally characterized members. Several enzymes in this family have been implicated in the regulation of translation and antibiotic susceptibility, emphasizing their significance in bacterial physiology and their relevance to human health. While few characterized enzymes have been shown to modify diverse RNA substrates, highlighting potentially broad substrate scope within the family, many enzymes in this class have no known substrates.

View Article and Find Full Text PDF
Article Synopsis
  • PHD reader domains are chromatin binding modules that help recruit protein complexes involved in modifying histones and repairing DNA.
  • KDM5A, a histone demethylase with three PHD domains, is often overexpressed in cancers and its activity increases when its PHD1 domain interacts with the H3 tail, highlighting a unique regulatory role.
  • The study reveals how PHD1 changes shape to bind H3 in a helical form and shows a preference for less methylated forms of H3K4, providing insights that could lead to new treatments targeting KDM5A.
View Article and Find Full Text PDF

Understanding the ligand preferences of epigenetic reader domains enables identification of modification states of chromatin with which these domains associate and can yield insight into recruitment and catalysis of chromatin-acting complexes. However, thorough exploration of the ligand preferences of reader domains is hindered by the limitations of traditional protein-ligand binding assays. Here, we evaluate the binding preferences of the PHD1 domain of histone demethylase KDM5A using the protein interaction by SAMDI (PI-SAMDI) assay, which measures protein-ligand binding in a high-throughput and sensitive manner binding-induced enhancement in the activity of a reporter enzyme, in combination with fluorescence polarization.

View Article and Find Full Text PDF

Functional cross-talk between the catalytic and reader domains in chromatin-modifying enzymes and protein complexes enable coordinated regulation of chromatin modification status, and consequently impacts chromatin-associated processes. ZZ domains are a recently identified class of chromatin readers that recognize the N-terminal region of histone H3 to direct and regulate acetylation activity of several histone acetylation complexes. Cross-talk between chromatin readers sensitive to methylation, and catalytic domains of methyltransferases and demethylases impacts substrate specificity, catalytic activity, and propagation of chromatin marks.

View Article and Find Full Text PDF

Histone demethylases catalyze the removal of methyl marks from histones, an activity associated with transcriptional regulation and DNA damage repair. As these processes are critical for normal physiology, deregulation of histone demethylases is disease causative, and their function and regulation are targets for therapeutic intervention. The larger of two histone demethylase families are Jumonji C (JmjC) demethylases.

View Article and Find Full Text PDF

Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance.

View Article and Find Full Text PDF

Human lysine demethylase KDM5A is a chromatin-modifying enzyme associated with transcriptional regulation, because of its ability to catalyze removal of methyl groups from methylated lysine 4 of histone H3 (H3K4me3). Amplification of KDM5A is observed in many cancers, including breast cancer, prostate cancer, hepatocellular carcinoma, lung cancer, and gastric cancer. In this study, we employed alanine scanning mutagenesis to investigate substrate recognition of KDM5A and identify the H3 tail residues necessary for KDM5A-catalyzed demethylation.

View Article and Find Full Text PDF

Cfr is a radical -adenosyl-l-methionine (SAM) enzyme that confers cross-resistance to antibiotics targeting the 23S rRNA through hypermethylation of nucleotide A2503. Three -like genes implicated in antibiotic resistance have been described, two of which, (B) and (C), have been sporadically detected in However, the methylase activity of Cfr(C) has not been confirmed. We found (B), (C), and a -like gene that shows only 51 to 58% protein sequence identity to Cfr and Cfr-like enzymes in clinical isolates recovered across nearly a decade in Mexico, Honduras, Costa Rica, and Chile.

View Article and Find Full Text PDF

Histone demethylase KDM5A removes methyl marks from lysine 4 of histone H3 and is often overexpressed in cancer. The in vitro demethylase activity of KDM5A is allosterically enhanced by binding of its product, unmodified H3 peptides, to its PHD1 reader domain. However, the molecular basis of this allosteric enhancement is unclear.

View Article and Find Full Text PDF