Publications by authors named "Danhui Qin"

Stimulator of interferon genes (STING) is vital in the cytosolic DNA-sensing process and critical for initiating the innate immune response, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases. Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) specifically binds the CpG dinucleotides in the viral RNAs of multiple viruses and promotes their degradation. ZAPS (ZC3HAV1 short isoform) is a potent stimulator of retinoid acid-inducible gene I (RIG-I) signaling during the antiviral response.

View Article and Find Full Text PDF

The NOD-like receptor family protein 3 (NLRP3) inflammasome is a crucial complex for the host to establish inflammatory immune responses and plays vital roles in a series of disorders, including Alzheimer's disease and acute peritonitis. However, its regulatory mechanism remains largely unclear. Zinc finger antiviral protein (ZAP), also known as zinc finger CCCH-type antiviral protein 1 (ZC3HAV1), promotes viral RNA degradation and plays vital roles in host antiviral immune responses.

View Article and Find Full Text PDF

Oxidative (or respiratory) burst confers host defense against pathogens by generating reactive species, including reactive nitrogen species (RNS). The microbial infection-induced excessive RNS damages many biological molecules via S-nitrosothiol (SNO) accumulation. However, the mechanism by which the host enables innate immunity activation during oxidative burst remains largely unknown.

View Article and Find Full Text PDF

Stimulator-of-interferon gene (STING) is a vital element of the innate immune system against DNA viruses. Optimal activation of STING is crucial for maintaining immune homeostasis and eliminating invading viruses, and the oligomerization of STING is an essential prerequisite for STING activation. However, the mechanism of cGAMP-induced STING oligomerization in ER remains unclear.

View Article and Find Full Text PDF

Stimulator of interferon gene (STING)-triggered autophagy is crucial for the host to eliminate invading pathogens and serves as a self-limiting mechanism of STING-induced interferon (IFN) responses. Thus, the mechanisms that ensure the beneficial effects of STING activation are of particular importance. Herein, we show that myristic acid, a type of long-chain saturated fatty acid (SFA), specifically attenuates cGAS-STING-induced IFN responses in macrophages, while enhancing STING-dependent autophagy.

View Article and Find Full Text PDF

Stimulator-of-interferon genes (STING) is vital for sensing cytosolic DNA and initiating innate immune responses against microbial infection and tumors. Redox homeostasis is the balance of oxidative and reducing reactions present in all living systems. Yet, how the intracellular redox state controls STING activation is unclear.

View Article and Find Full Text PDF