The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA-conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell-specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFAntagonistic pleiotropy is a foundational theory that predicts aging-related diseases are the result of evolved genetic traits conferring advantages early in life. Here we examine CaMKII, a pluripotent signaling molecule that contributes to common aging-related diseases, and find that its activation by reactive oxygen species (ROS) was acquired more than half-a-billion years ago along the vertebrate stem lineage. Functional experiments using genetically engineered mice and flies reveal ancestral vertebrates were poised to benefit from the union of ROS and CaMKII, which conferred physiological advantage by allowing ROS to increase intracellular Ca and activate transcriptional programs important for exercise and immunity.
View Article and Find Full Text PDFWe have previously demonstrated that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced airway inflammation. The underlying mechanism, however, remains undetermined. Here we investigated the molecular mechanisms underlying the potentiation of BaP exposure on Der f 1-induced airway inflammation in asthma.
View Article and Find Full Text PDFIgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL‑36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL‑36R-blocking antibody-treated mice.
View Article and Find Full Text PDFJ Allergy Clin Immunol
April 2021
Background: Autophagy plays an important role in causing inflammatory responses initiated by environmental pollutants and respiratory tract infection.
Objective: We sought to investigate the role of cockroach allergen-induced excessive activation of autophagy in allergic airway inflammation and its underlying molecular mechanisms.
Methods: Environmental allergen-induced autophagy was investigated in the primary human bronchial epithelial cells (HBECs) and lung tissues of asthmatic mouse model and patients.
Clin Transl Immunology
May 2020
Asthma is a chronic and heterogeneous disease characterised by airway inflammation and intermittent airway narrowing. The key obstacle in the prevention and treatment of asthma has been our incomplete understanding of its aetiology and biological mechanisms. The ras homolog family member A (RhoA) of the Rho family GTPases has been considered to be one of the most promising and novel therapeutic targets for asthma.
View Article and Find Full Text PDFEnvironmental pollutants and allergens induce oxidative stress and mitochondrial dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins, and subsequently development of asthma. Particularly, particulate matter 2.
View Article and Find Full Text PDFmiR-511-3p, encoded by CD206/Mrc1, was demonstrated to reduce allergic inflammation and promote alternative (M2) macrophage polarization. Here, we sought to elucidate the fundamental mechanism by which miR-511-3p attenuates allergic inflammation and promotes macrophage polarization. Compared with WT mice, the allergen-challenged Mrc1-/- mice showed increased airway hyperresponsiveness (AHR) and inflammation.
View Article and Find Full Text PDFBackground: Numbers of mesenchymal stem cells (MSCs) are increased in the airways after allergen challenge. Ras homolog family member A (RhoA)/Rho-associated protein kinase 1 (ROCK) signaling is critical in determining the lineage fate of MSCs in tissue repair/remodeling.
Objectives: We sought to investigate the role of RhoA/ROCK signaling in lineage commitment of MSCs during allergen-induced airway remodeling and delineate the underlying mechanisms.
Exposure to cockroach allergen is a strong risk factor for developing asthma. Asthma has been associated with allergen-induced airway epithelial damage and heightened oxidant stress. In this study, we investigated cockroach allergen-induced oxidative stress in airway epithelium and its underlying mechanisms.
View Article and Find Full Text PDFAllergic asthma is associated with airway inflammation and airway hyperresponsiveness. Macrophage polarization has been shown to have a profound impact on asthma pathogenesis. On exposure to local microenvironments, recruited macrophages can be polarized into either classically activated (or M1) or alternatively activated (or M2) phenotypes.
View Article and Find Full Text PDFJ Allergy Clin Immunol
February 2018
Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with mast cell-mediated inflammation and heightened oxidant stress. Kynurenine (KYN), an endogenous tryptophan metabolite, can promote allergen-induced mast cell activation through the aryl hydrocarbon receptor (AhR).
Objectives: We sought to determine the role of the KYN/AhR axis and oxidant stress in mast cell activation and the development of CRSwNP.
Background: Mannose receptor (MRC1/CD206) has been suggested to mediate allergic sensitization and asthma to multiple glycoallergens, including cockroach allergens.
Objective: We sought to determine the existence of a protective mechanism through which MRC1 limits allergic inflammation through its intronic miR-511-3p.
Methods: We examined MRC1-mediated cockroach allergen uptake by lung macrophages and lung inflammation using C57BL/6 wild-type (WT) and Mrc1 mice.
Introduction: Cockroach allergen exposure elicits cockroach sensitization and poses an increased risk for asthma. However, the major components in cockroach allergen and the mechanisms underlying the induction of cockroach allergen-induced allergy and asthma remain largely elusive. We sought to examine the role of cockroach-associated glycan in regulating human basophil function.
View Article and Find Full Text PDFOxidation of calmodulin-dependent protein kinase II (ox-CaMKII) by ROS has been associated with asthma. However, the contribution of ox-CaMKII to the development of asthma remains to be fully characterized. Here, we tested the effect of ox-CaMKII on IgE-mediated mast cell activation in an allergen-induced mouse model of asthma using oxidant-resistant CaMKII MMVVδ knockin (MMVVδ) mice.
View Article and Find Full Text PDFExposure to cockroach allergen leads to allergic sensitization and increased risk of developing asthma. Aryl hydrocarbon receptor (AhR), a receptor for many common environmental contaminants, can sense not only environmental pollutants but also microbial insults. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity to modulate immune responses.
View Article and Find Full Text PDFBy 2025, more than 500 M people worldwide will suffer from diabetes; 125 M will develop foot ulcer(s) and 20 M will undergo an amputation, creating a major health problem. Understanding how these wounds become chronic will provide insights to reverse chronicity. We hypothesized that oxidative stress (OS) in wounds is a critical component for generation of chronicity.
View Article and Find Full Text PDF