This work presents the preparation of bioactive glasses 70SiO-(26 - )CaO-4PO-AgO (with = 0, 1, 3, 10 mol%) by a modified sol-gel method with reduced synthesis time based on hydrothermal reaction in a medium without acid or base catalysts. The synthetic materials were characterized by several physical-chemical techniques such as TG-DSC, XRD, SEM, TEM, and N adsorption/desorption measurement. The analysis data confirmed that the glass sample not containing Ag has a completely amorphous structure, while glass samples containing Ag exhibited a pure phase of metallic nano-silver in the glass amorphous phase.
View Article and Find Full Text PDFStabilization for tetrylone complexes, which carry ylidone(0) ligands [(CO)W-X (YCp*)] (X = Ge, Sn, Pb; Y = B-Tl), has become an active theoretical research because of their promising application. Structure, bonding, and quantum properties of the transition-metal donor-acceptor complexes were theoretically investigated at the level of theory BP86 with several types of basis sets including SVP, TZVPP, and TZ2P+. The optimized structures reveal that all ligands X (YCp*) are strongly bonded in tilted modes to the metal fragment W(CO), and Cp* rings are mainly η-bonded to atom X.
View Article and Find Full Text PDFIn this study, pH indicative films were successfully synthesized from hydrogels made by blending 1% poly(vinyl alcohol) (PVA) and 1% chitosan (CS) with anthocyanin (ATH) and sodium tripolyphosphate (STPP). Particularly, ATH extracted from red cabbage was used as the pH indicator, while STPP was utilized as the cross-linking agent to provide better mechanical properties of the cast films. FT-IR spectra confirmed the existence of the ATH in the cast films.
View Article and Find Full Text PDFBiodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis).
View Article and Find Full Text PDF