Cell separation plays an important role in the fields of analytical chemistry and biomedicine. To solve the blockage problem and improve the separation throughput in the traditional microstructure filtration-based separation approach, a continuous cell separation and collection approach via micropost array railing on a microfilter and negative dielectrophoresis combined chip is proposed. By tilting the micropost array at a certain angle, microparticles or cells enter the collection area under micropost array railing.
View Article and Find Full Text PDFMicromachines (Basel)
January 2019
Particle separation is important in chemical and biomedical analysis. Among all particle separation approaches, microstructure filtration which based particles size difference has turned into one of the most commonly methods. By controlling the movement of particles, dielectrophoresis has also been widely adopted in particle separation.
View Article and Find Full Text PDFMicromachines (Basel)
November 2016
We present a new method of analyzing the deformability of fused cells in a microfluidic array device. Electrical stresses-generated by applying voltages (4⁻20 V) across discrete co-planar microelectrodes along the side walls of a microfluidic channel-have been used to electro-deform fused and unfused stem cells. Under an electro-deformation force induced by applying an alternating current (AC) signal, we observed significant electro-deformation phenomena.
View Article and Find Full Text PDF