Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration.
View Article and Find Full Text PDFWhile there is a growing interest in the use of statins, HMG-CoA reductase inhibitors, to treat neurodegenerative diseases, statins are associated with conflicting effects within the central nervous system (CNS) without clear evidence of the underlying mechanisms. This study systematically investigated effects of four statins (atorvastatin, pitavastatin, cerivastatin, and lovastatin) on neuronal cells under pathological condition using an in vitro model depicting ischemic injury, as well as tested under physiological condition. All four statins at micromolar concentrations display toxic effects on neuron cells under physiological condition.
View Article and Find Full Text PDFPrimary human brain microvascular endothelial cell (HBMEC) is the major component of the blood-brain barrier (BBB). Atorvastatin, a HMG-CoA reductase inhibitor, is a cholesterol-lowering drug commonly used to reduce the risk for cardiovascular disease. Numerous studies have reported the pleiotropic effects of atorvastatin on endothelial cells, but the findings are controversial and inconclusive.
View Article and Find Full Text PDFThe nucleus accumbens (NAc) is the ventral part of the striatum and the interface between cognition, emotion, and action. It is composed of three major subnuclei: i.e.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by chronic progressive cognitive deterioration frequently accompanied by psychopathological symptoms, including changes in personality and social isolation, which severely reduce quality of life. Currently, no viable therapies or present-day drugs developed for the treatment of AD symptoms are able to slow or reverse AD progression or prevent the advance of neurodegeneration. As such, non-drug alternatives are currently being tested, including deep brain stimulation (DBS).
View Article and Find Full Text PDFAlthough antibiotics are generally well tolerated, their toxic effects on the central nervous system have been gained attention. In this study, we systematically investigated the neuron toxicity of antibiotics from six different classes. We show that clinically relevant concentrations of metronidazole, tigecycline, azithromycin and clindamycin but not ampicillin or sulfamethoxazole induce apoptosis of human primary neuron cells and lines.
View Article and Find Full Text PDFBACKGROUND Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment.
View Article and Find Full Text PDFBackground: The AMP-activated protein kinase (AMPK) is a sensor of cellular energy and nutrient status, with substantial amount of cross talk with other signaling pathways, including its phosphorylation by Akt, PKA, and GSK3β.
Aims: Various signaling pathways and energy-consuming transport of glutamate receptors subunits are required in synaptic plasticity. However, it is unknown which energy sensors integrate the signaling pathways in these processes.
Deficit in synaptic plasticity in the hippocampus frequently occurs during normal aging. Although the protein level and calcium permeability of AMPARs alter with aging, the alteration of AMPARs and their regulatory proteins during aging are far from understanding. Dynamics of GluR2 subunit are dependent on the function of protein interacting with Cα kinase 1 (PICK1), PKCα and calcineurin (CaN).
View Article and Find Full Text PDFThe accumulation of malondialdehyde (MDA), a lipid peroxidation by-product that has been used as an indicator of cellular oxidation status, is significantly increased in many neurological diseases such as brain ischemia/reperfusion, Alzheimer's disease and Parkinson's disease in vivo. In the present study, we found that MDA treatment in vitro reduced cortical neuronal viability in a time- and dose-dependent manner and induced cellular apoptosis as well as necrosis simultaneously. Furthermore, exposure to MDA led to accumulation of intracellular reactive oxygen species, dysfunction of mitochondria (denoted by the loss of mitochondrial transmembrane potential (Δψm)) and activation of JNK and ERK.
View Article and Find Full Text PDFDeficits in learning and memory accompanied by age-related neurodegenerative diseases are closely related to the impairment of synaptic plasticity. In this study, we investigated the role of thiol redox status in the modulation of the N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) in CA1 areas of hippocampal slices. Our results demonstrated that the impaired LTP induced by aging could be reversed by acute administration of reductants that can regulate thiol redox status directly, such as dithiothreitol or β-mercaptoethanol, but not by classical anti-oxidants such as vitamin C or trolox.
View Article and Find Full Text PDFAstrocytes are vital structures that support and/or protect neighboring neurons from pathology. Although it is generally accepted that glutamate receptors mediate most astrocyte effects, acid-evoked currents have recently attracted attention for their role in this regard. Here, we identified the existence and characteristics of acid-sensing ion channels (ASICs) and the transient receptor potential vanilloid type 1 (TRPV1) in astrocytes.
View Article and Find Full Text PDFThe adipocyte-derived hormone leptin and the pancreatic beta-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca(2+)-activated potassium (BK) currents on them.
View Article and Find Full Text PDF