Publications by authors named "Danealle K Parchment"

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively.

View Article and Find Full Text PDF

Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth.

View Article and Find Full Text PDF

Sore throat is one of the most common complaints encountered in the ambulatory clinical setting. Rapid, culture-independent diagnostic techniques that do not rely on pharyngeal swabs would be highly valuable as a point-of-care strategy to guide outpatient antibiotic treatment. Despite the promise of this approach, efforts to detect volatiles during oropharyngeal infection have yet been limited.

View Article and Find Full Text PDF

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential -linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition.

View Article and Find Full Text PDF

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.

View Article and Find Full Text PDF

While neutralizing antibodies that target the HIV-1 fusion peptide have been elicited in mice by vaccination, antibodies reported thus far have been from only a single antibody class that could neutralize ~30% of HIV-1 strains. To explore the ability of the murine immune system to generate cross-clade neutralizing antibodies and to investigate how higher breadth and potency might be achieved, we tested 17 prime-boost regimens that utilized diverse fusion peptide-carrier conjugates and HIV-1 envelope trimers with different fusion peptides. We observed priming in mice with fusion peptide-carrier conjugates of variable peptide length to elicit higher neutralizing responses, a result we confirmed in guinea pigs.

View Article and Find Full Text PDF

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults.

View Article and Find Full Text PDF