Antibody-drug conjugates (ADCs) have emerged as valuable targeted anticancer therapeutics with at least 11 approved therapies and over 80 advancing through clinical trials. Enediyne DNA-damaging payloads represented by the flagship of this family of antitumor agents, -acetyl calicheamicin [Formula: see text], have a proven success track record. However, they pose a significant synthetic challenge in the development and optimization of linker drugs.
View Article and Find Full Text PDFPNU-159682 is a highly potent secondary metabolite of nemorubicin belonging to the anthracycline class of natural products. Due to its extremely high potency and only partially understood mechanism of action, it was deemed an interesting starting point for the development of a new suite of linker drugs for antibody drug conjugates (ADCs). Structure activity relationships were explored on the small molecule which led to six linker drugs being developed for conjugation to antibodies.
View Article and Find Full Text PDFVerruculogen and fumitremorgin A are bioactive alkaloids that contain a unique eight-membered endoperoxide. Although related natural products such as fumitremorgins B and C have been previously synthesized, we report the first synthesis of the more complex, endoperoxide-containing members of this family. A concise route to verruculogen and fumitremorgin A relied not only on a hydroperoxide/indole hemiaminal cyclization, but also on the ability to access the seemingly simple starting material, 6-methoxytryptophan.
View Article and Find Full Text PDFDensity functional theory (DFT) calculations with B3LYP and M06 functionals elucidated the reactivities of alkynes and Z/E selectivity of cyclodecatriene products in the Ni-catalyzed [4 + 4 + 2] cycloadditions of dienes and alkynes. The Ni-mediated oxidative cyclization of butadienes determines the Z/E selectivity. Only the oxidative cyclization of one s-cis to one s-trans butadiene is facile and exergonic, leading to the observed 1Z,4Z,8E-cyclodecatriene product.
View Article and Find Full Text PDFArtificially mimicking the cyclase phase of terpene biosynthesis inspires the invention of new methodologies, since working with carbogenic frameworks containing minimal functionality limits the chemist's toolbox of synthetic strategies. For example, the construction of terpene skeletons from five-carbon building blocks would be an exciting pathway to mimic in the laboratory. Nature oligomerizes, cyclizes, and then oxidizes γ,γ-dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) to all of the known terpenes.
View Article and Find Full Text PDFEnzymes are a continuing source of inspiration for the design of new chemical reactions that proceed with efficiency, high selectivity and minimal waste. In many biochemical processes, different catalytic species, such as Lewis acids and bases, are involved in precisely orchestrated interactions to activate reactants simultaneously or sequentially. This type of 'cooperative catalysis', in which two or more catalytic cycles operate concurrently to achieve one overall transformation, has great potential in enhancing known reactivity and driving the development of new chemical reactions with high value.
View Article and Find Full Text PDF