Pharmacol Biochem Behav
September 2016
Acute exposure to ±3,4-methylenedioxymethamphetamine (MDMA) preferentially increases release of serotonin (5-HT), and a role of 5-HT in many of the behavioral effects of acute exposure to MDMA has been demonstrated. A role of 5-HT in MDMA self-administration in rats has not, however, been adequately determined. Therefore, the present study measured the effect of pharmacological manipulation of some 5-HT receptor subtypes on self-administration of MDMA.
View Article and Find Full Text PDFPsychopharmacology (Berl)
April 2016
Rationale: Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA.
View Article and Find Full Text PDFRationale: 3,4 Methylenedioxymethamphetamine (MDMA) preferentially stimulates the release of serotonin (5-HT) that subsequently produces behavioral responses by activation of post-synaptic receptor mechanisms. The 5-HT1A and 5-HT1B receptors are both well localized to regulate dopamine (DA) release, and have been implicated in modulating the reinforcing effects of many drugs of abuse, but a role in acquisition of self-administration has not been determined.
Objectives: This study was designed to determine the effect of pharmacological manipulation of 5-HT1A and 5-HT1B receptor mechanisms on the acquisition of MDMA self-administration.
As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.
View Article and Find Full Text PDFPharmacol Biochem Behav
September 2014
RU 24969 is a widely used, but non-selective, 5-HT1B/1A agonist that decreases fluid consumption and increases forward locomotion. The mechanism underlying these behavioural responses is not, however, well understood. Accordingly, effects of the selective 5-HT1A and 5-HT1B antagonists, WAY 100635, and GR 127935, respectively, on these two responses to RU 24969 were determined.
View Article and Find Full Text PDFA consistent effect of repeated exposure to 3,4 methylenedioxymethamphetamine (MDMA) is a decrease in the tissue levels of serotonin (5-HT). A variety of behavioural and neurochemical tests were conducted to determine whether the tissue deficits were accompanied by an increased sensitivity of the 5-HT1a autoreceptor. Tests were conducted 2 weeks following MDMA exposure (four injections of 10.
View Article and Find Full Text PDFIn the present study, we explored the role of faces in oculomotor inhibition of return (IOR) using a tightly controlled spatial cuing paradigm. We measured saccadic response latency to targets following peripheral cues that were either faces or objects of lesser sociobiological salience. A recurring influence from cue content was observed across numerous methodological variations.
View Article and Find Full Text PDF