Publications by authors named "Danai-Dionysia Fourla"

Previous studies have shown that the intracellular domains of opioid receptors serve as platforms for the formation of a multi-component signaling complex consisting of various interacting partners (Leontiadis et al., 2009, Cell Signal. 21, 1218-1228; Georganta et al.

View Article and Find Full Text PDF

Aims: Powerful analgesics relieve pain primarily through activating mu opioid receptor (MOR), but the long-term use of MOR agonists, such as morphine, is limited by the rapid development of tolerance. Recently, it has been observed that simultaneous stimulation of the delta opioid receptor (DOR) and MOR limits the incidence of tolerance induced by MOR agonists. 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1) is a centrally acting agent with antinociceptive activity comparable to morphine and is able to bind and activate MOR and DOR.

View Article and Find Full Text PDF

Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides.

View Article and Find Full Text PDF

6,7-benzomorphan derivatives, exhibiting different mu, delta, and kappa receptor selectivity profiles depending on the N-substituent, represent a useful skeleton for the synthesis of new and better analgesic agents. In this work, an aromatic ring and/or alkyl residues have been used with an N-propanamide or N-acetamide spacer for the synthesis of a new series of 5,9-dimethyl-2'-hydroxy-6,7-benzomorphan derivatives (12-22). Data obtained by competition binding assays showed that the mu opioid receptor seems to prefer an interaction with the 6,7-benzomorphan ligands having an N-substituent with a propanamide spacer and less hindered amide.

View Article and Find Full Text PDF