Confirming the presence (or absence) of dynamic functional connectivity (dFC) states during rest is an important open question in the field of cognitive neuroscience. The prevailing dFC framework aims to identify dynamics directly from connectivity estimates with a sliding window approach, however this method suffers from several drawbacks including sensitivity to window size and poor test-retest reliability. We hypothesize that time-varying changes in functional connectivity are mirrored by significant temporal changes in functional activation, and that this coupling can be leveraged to study dFC without the need for a predefined sliding window.
View Article and Find Full Text PDFObjective: In applying machine learning (ML) to electronic health record (EHR) data, many decisions must be made before any ML is applied; such preprocessing requires substantial effort and can be labor-intensive. As the role of ML in health care grows, there is an increasing need for systematic and reproducible preprocessing techniques for EHR data. Thus, we developed FIDDLE (Flexible Data-Driven Pipeline), an open-source framework that streamlines the preprocessing of data extracted from the EHR.
View Article and Find Full Text PDFViruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve.
View Article and Find Full Text PDF