Publications by authors named "Danae Gonzalez Ortiz"

This work demonstrated the potential of CNC as a substitute for PEG as an additive in ultrafiltration membrane fabrication. Two sets of modified membranes were fabricated using the phase inversion technique, with polyethersulfone (PES) as the base polymer and 1-N-methyl-2 pyrrolidone (NMP) as the solvent. The first set was fabricated with 0.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNC) obtained from waste sawdust were used to modify the polyamide membrane fabricated by interfacial polymerization of m-phenylene-diamine (MPDA) and trimesoyl chloride (TMC). The efficiency of the modification with sawdust-derived CNC was investigated using zeta potential and X-ray photoelectron spectroscopy (XPS). The effect of the modification on membrane mechanical strength and stability in acidic and alkaline solutions was also investigated.

View Article and Find Full Text PDF

In this work, cellulose nanocrystals (CNC) derived from sawdust were successfully incorporated into a nanofiltration membrane produced by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC). The characteristics of unmodified and CNC-modified membranes were investigated using scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), zeta potential measurement, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The performance of the membranes in terms of nitrate removal and water flux was investigated using 60 mg/L of potassium nitrate solution in a dead-end test cell.

View Article and Find Full Text PDF

Polysulfone (PSU) membranes with poly(vinyl pyrrolidone) (PVP) as a pore-forming and hydrophilic additive were prepared using the non-solvent-induced phase separation (NIPS) technique. PVP immobilization by radical-initiated crosslinking using potassium persulfate (KPS) was studied in view of obtaining membranes with high and long-lasting surface hydrophilicity. A method based on the ATR-FTIR technique was developed to discriminate crosslinked PVP from unreacted PVP in the membrane.

View Article and Find Full Text PDF

In recent years, numerous studies have been conducted to develop biopolymer-based membranes, highlighting the challenges to prepare porous structures with control porosity. In this paper an innovative method that relies on the generation of Pickering emulsions was developed to prepare porous membranes from gelatin for filtration purpose. Hexagonal boron nitride nanosheets (h-BNNS) were used to stabilize micro-droplets of castor oil in a continuous homogeneous gelatin solution.

View Article and Find Full Text PDF

A green approach to prepare exfoliated hexagonal boron nitride nanosheets (h-BNNS) from commercially pristine h-BN involving a two-step procedure was investigated. The first step involves the dispersion of pristine h-BN within an aqueous solution containing gelatin and potassium or zinc chloride using a sonication method. The second involves the removal of larger exfoliated h-BNNS through a centrifugation procedure.

View Article and Find Full Text PDF

The formation of inverse Pickering emulsions using exfoliated hexagonal boron nitride (h-BN) as an effective particulate stabilizer without using any surfactants is reported for the first time. The stability and the type of h-BN Pickering emulsions formulated with different BN concentrations and by varying oil/water (o/w) ratios are studied and discussed. First the emulsion structure is analyzed microscopically through optical and epifluorescence microscopy and macroscopically by the study of the rheological behavior.

View Article and Find Full Text PDF