Within a multistate viral genomic surveillance program, we evaluated whether proportions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections attributed to the JN.1 variant and to XBB-lineage variants (including HV.1 and EG.
View Article and Find Full Text PDFWithin a multistate clinical cohort, SARS-CoV-2 antiviral prescribing patterns were evaluated from April 2022-June 2023 among nonhospitalized patients with SARS-CoV-2 with risk factors for severe COVID-19. Among 3247 adults, only 31.9% were prescribed an antiviral agent (87.
View Article and Find Full Text PDFThe Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the and genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community.
View Article and Find Full Text PDFThe majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts.
View Article and Find Full Text PDFThe Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the and genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community.
View Article and Find Full Text PDFBackground: Between November 2021 and February 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events.
Methods: We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant.
Findings: We identified 18 co-infections, one of which displayed evidence of a low Delta-Omicron recombinant viral population.
We report on the sequencing of 74,348 SARS-CoV-2 positive samples collected across the United States and show that the Delta variant, first detected in the United States in March 2021, made up the majority of SARS-CoV-2 infections by July 1, 2021 and accounted for >99.9% of the infections by September 2021. Not only did Delta displace variant Alpha, which was the dominant variant at the time, it also displaced the Gamma, Iota, and Mu variants.
View Article and Find Full Text PDFRNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER.
View Article and Find Full Text PDFMotivation: Long-read, single-molecule sequencing platforms hold great potential for isoform discovery and characterization of multi-exon transcripts. However, their high error rates are an obstacle to distinguishing novel transcript isoforms from sequencing artifacts. Therefore, we developed the package TranscriptClean to correct mismatches, microindels and noncanonical splice junctions in mapped transcripts using the reference genome while preserving known variants.
View Article and Find Full Text PDFThe reconstruction of gene regulatory networks underlying cell differentiation from high-throughput gene expression and chromatin data remains a challenge. Here, we derive dynamic gene regulatory networks for human myeloid differentiation using a 5-day time series of RNA-seq and ATAC-seq data. We profile HL-60 promyelocytes differentiating into macrophages, neutrophils, monocytes, and monocyte-derived macrophages.
View Article and Find Full Text PDF