Background/objectives: Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4.
View Article and Find Full Text PDFTherapeutic vaccines are currently at the forefront of medical innovation. Various endeavors have been made to develop more consolidated approaches to producing nucleic acid-based vaccines, both DNA and mRNA vaccines. These innovations have continued to propel therapeutic platforms forward, especially for mRNA vaccines, after the successes that drove emergency FDA approval of two mRNA vaccines against SARS-CoV-2.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (T) cells play pivotal roles in hindering the anticancer immunity.
View Article and Find Full Text PDF