Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute's Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers.
View Article and Find Full Text PDFAlthough there are thousands of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown preanalytical variables. We analyzed FFPE tissue biospecimens as part of the National Cancer Institute (NCI) Biospecimen Preanalytical Variables program to identify mRNA markers denoting cold ischemic time. The mRNA was extracted from colon, kidney, and ovary cancer FFPE blocks (40 patients, 10-12 hr fixation time) with 1, 2, 3, and 12 hr cold ischemic times, then analyzed using qRT-PCR for 23 genes selected following a literature search.
View Article and Find Full Text PDFAlthough there are millions of formalin-fixed paraffin-embedded (FFPE) tissue blocks potentially available for scientific research, many are of questionable quality, partly due to unknown fixation conditions. We analyzed FFPE tissue biospecimens as part of the NCI Biospecimen Preanalytical Variables (BPV) program to identify microRNA (miRNA) markers for fixation time. miRNA was extracted from kidney and ovary tumor FFPE blocks (19 patients, cold ischemia ≤2 hours) with 6, 12, 24, and 72 hours fixation times, then analyzed using the WaferGen SmartChip platform (miRNA chip with 1036 miRNA targets).
View Article and Find Full Text PDF