We analyzed 37 satellite reflectance algorithms and 321 variants for five satellites for estimating turbidity in a freshwater inland lake in Ohio using coincident real hyperspectral aircraft imagery converted to relative reflectance and dense coincident surface observations. This study is part of an effort to develop simple proxies for turbidity and algal blooms and to evaluate their performance and portability between satellite imagers for regional operational turbidity and algal bloom monitoring. Turbidity algorithms were then applied to synthetic satellite images and compared to in situ measurements of turbidity, chlorophyll-a (Chl-a), total suspended solids (TSS) and phycocyanin as an indicator of cyanobacterial/blue green algal (BGA) abundance.
View Article and Find Full Text PDFThis study evaluated the performances of twenty-nine algorithms that use satellite-based spectral imager data to derive estimates of chlorophyll-a concentrations that, in turn, can be used as an indicator of the general status of algal cell densities and the potential for a harmful algal bloom (HAB). The performance assessment was based on making relative comparisons between two temperate inland lakes: Harsha Lake (7.99 km) in Southwest Ohio and Taylorsville Lake (11.
View Article and Find Full Text PDFEnviron Sci Process Impacts
May 2015
Ten low-order streams draining headwater catchments within the East Fork Little Miami Watershed were evaluated throughout one year for the presence of six steroidal hormones, the antibiotic sulfamethoxazole, the antimicrobials triclosan and triclocarban, and the artificial sweetener sucralose. The wastewater management practices in the catchments included septic systems, sanitary sewers, a combination of both, and a parkland with no treatment systems. The concentrations and detection frequencies of sucralose showed a significant positive correlation with the septic density in each catchment.
View Article and Find Full Text PDFRelatively little is known about the behavior and toxicity of nanoparticles in the environment. Objectives of work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of a commonly used bioassay for testing AgNPs, and determining the advantages and disadvantages of multiple characterization techniques for AgNPs in simple aquatic systems. Daphnia magna were exposed to a silver nitrate solution and AgNPs suspensions including commercially available AgNPs (uncoated and coated), and laboratory-synthesized AgNPs (coated with coffee or citrate).
View Article and Find Full Text PDF