Publications by authors named "Dana MacGregor"

Alopecurus aequalis is a winter annual or short-lived perennial bunchgrass which has in recent years emerged as the dominant agricultural weed of barley and wheat in certain regions of China and Japan, causing significant yield losses. Its robust tillering capacity and high fecundity, combined with the development of both target and non-target-site resistance to herbicides means it is a formidable challenge to food security. Here we report on a chromosome-scale assembly of A.

View Article and Find Full Text PDF

Replicated trait evolution can provide insights into the mechanisms underlying the evolution of biodiversity. One example of replicated evolution is the awn, an organ elaboration in grass inflorescences. Awns are likely homologous to leaf blades.

View Article and Find Full Text PDF
Article Synopsis
  • - Weeds are valuable for research because they affect agriculture and can quickly adapt to changes caused by human activities.
  • - A shortage of genomic data limits the understanding of how weeds rapidly adapt, especially regarding traits like resistance to herbicides and stress tolerance.
  • - The International Weed Genomics Consortium aims to create genomic resources that enhance weed control research and support crop breeding by providing insights into adaptation and stress tolerance.
View Article and Find Full Text PDF

By identifying the factors that initiate seed dormancy release, we can reliably predict whether a seed will remain dormant within or exit the seed bank and become a seedling. With regard to annual weed species, assessing which factors efficiently break seed dormancy is critical for estimating the number of weed seeds that will develop into problematic weeds. To better understand dormancy breaking in Redroot pigweed (), dormant seeds were treated with cold stratification (4°C for 30 days), application of gibberellic acid (at 500, 1000, 1500, and 2000 parts per million), ultrasound (for 10, 20, 30, and 40 min), soaking in hot water (90°C for 3, 5, 7, and 10 min), and 98% sulfuric acid (for 1, 2, and 3 min).

View Article and Find Full Text PDF

Black-grass (Alopecurus myosuroides ) is one of the most problematic agricultural weeds of Western Europe, causing significant yield losses in winter wheat (Triticum aestivum ) and other crops through competition for space and resources. Previous studies link black-grass patches to water-retaining soils, yet its specific adaptations to these conditions remain unclear. We designed pot-based waterlogging experiments to compare 13 biotypes of black-grass and six cultivars of wheat.

View Article and Find Full Text PDF

(blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA).

View Article and Find Full Text PDF

Mother plants play an important role in the control of dormancy and dispersal characters of their progeny. In Arabidopsis seed dormancy is imposed by the embryo-surrounding tissues of the endosperm and seed coat. Here we show that VERNALIZATION5/VIN3-LIKE 3 (VEL3) maintains maternal control over progeny seed dormancy by establishing an epigenetic state in the central cell that primes the depth of primary seed dormancy later established during seed maturation.

View Article and Find Full Text PDF

Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated management of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe.

View Article and Find Full Text PDF

Background: Unravelling the genetic architecture of non-target-site resistance (NTSR) traits in weed populations can inform questions about the inheritance, trade-offs and fitness costs associated with these traits. Classical quantitative genetics approaches allow study of the genetic architecture of polygenic traits even where the genetic basis of adaptation remains unknown. These approaches have the potential to overcome some of the limitations of previous studies into the genetics and fitness of NTSR.

View Article and Find Full Text PDF

Although seed dormancy is advantageous for annual plants in the wild, unsynchronized germination in the laboratory leads to increased error in measurements. Therefore, techniques to promote and synchronize germination are routinely used. Ultrasound is one of the newest methods for breaking dormancy in weed seeds.

View Article and Find Full Text PDF

Virus-mediated transient expression techniques create loss- and gain-of-function mutations in black-grass with genotype specificity and measurable changes in herbicide resistance.

View Article and Find Full Text PDF

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype.

View Article and Find Full Text PDF

The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote.

View Article and Find Full Text PDF

Understanding of the roles that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1) plays in the plant's ability to sense and respond to environmental signals has grown dramatically. Mechanisms through which HOS1 affects plant development have been uncovered, and the broader consequences of hos1 on the plant's ability to perceive and respond to its environment have been investigated. As such, it has been possible to place HOS1 as a key integrator of temperature information in response to both acute signals and cues that indicate time of year into developmental processes that are essential for plant survival.

View Article and Find Full Text PDF

Clock-regulated pathways coordinate the response of many developmental processes to changes in photoperiod and temperature. We model two of the best-understood clock output pathways in Arabidopsis, which control key regulators of flowering and elongation growth. In flowering, the model predicted regulatory links from the clock to cycling DOF factor 1 (CDF1) and flavin-binding, KELCH repeat, F-box 1 (FKF1) transcription.

View Article and Find Full Text PDF

Seasonal behavior is important for fitness in temperate environments but it is unclear how progeny gain their initial seasonal entrainment. Plants use temperature signals to measure time of year, and changes to life histories are therefore an important consequence of climate change. Here we show that in Arabidopsis the current and prior temperature experience of the mother plant is used to control germination of progeny seeds, via the activation of the florigen Flowering Locus T (FT) in fruit tissues.

View Article and Find Full Text PDF

Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy.

View Article and Find Full Text PDF

Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments.

View Article and Find Full Text PDF

Circadian clocks confer advantages by restricting biological processes to certain times of day through the control of specific phased outputs. Control of temperature signalling is an important function of the plant oscillator, but the architecture of the gene network controlling cold signalling by the clock is not well understood. Here we use a model ensemble fitted to time-series data and a corrected Akaike Information Criterion (AICc) analysis to extend a dynamic model to include the control of the key cold-regulated transcription factors C-REPEAT BINDING FACTORs 1-3 (CBF1, CBF2, CBF3).

View Article and Find Full Text PDF

Circadian clocks exhibit 'temperature compensation', meaning that they show only small changes in period over a broad temperature range. Several clock genes have been implicated in the temperature-dependent control of period in Arabidopsis. We show that blue light is essential for this, suggesting that the effects of light and temperature interact or converge upon common targets in the circadian clock.

View Article and Find Full Text PDF

This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation.

View Article and Find Full Text PDF