Publications by authors named "Dana M Leichter"

Background: Global indices of right ventricle (RV) function provide limited insights into mechanisms underlying RV remodeling in pulmonary hypertension (PH). While RV myocardial architectural remodeling has been observed in PH, its effect on RV adaptation is poorly understood.

Methods: Hemodynamic assessments were performed in 2 rodent models of PH.

View Article and Find Full Text PDF

Biomechanical relationships involving lingual myoanatomy, contractility, and bolus movement are fundamental properties of human swallowing. To portray the relationship between lingual deformation and bolus flow during swallowing, a weakly one-way solid-fluid finite element model (FEM) was derived employing an elemental mesh aligned to magnetic resonance diffusional tractography (Q-space MRI, QSI) of the human tongue, an arbitrary Lagrangian-Eulerian (ALE) formulation with remeshing to account for the effects of lingual surface (boundary) deformation, an implementation of patterned fiber shortening, and a computational visualization of liquid bolus flow. Representing lingual tissue deformation in terms of its 2D principal Lagrangian strain in the mid-sagittal plane, we demonstrated that the swallow sequence was characterized by initial superior-anterior expansion directed towards the hard palate, followed by sequential, radially directed, contractions of the genioglossus and verticalis to promote lingual rotation (lateral perspective) and propulsive displacement.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is crucial for regulating heart contraction, particularly via its amino terminal (N')-region, while dephosphorylation during heart injury can lead to contractile dysfunction due to cleavage of a specific region.
  • The study used a transgenic mouse model missing the C0-C1f region of cMyBP-C, which developed dilated cardiomyopathy, highlighting the significance of the N'-region in heart muscle function.
  • Experiments showed that restoring the N'-region with recombinant proteins helped regain normal actomyosin interactions and contractility, revealing insights into how myocardial injury can affect heart muscle structure and function.
View Article and Find Full Text PDF