Publications by authors named "Dana M Clausen"

Accumulation of amyloid-β peptide (Aβ) aggregates in synapses may contribute to the profound synaptic loss characteristic of Alzheimer's disease (AD). The origin of synaptic Aβ aggregates remains elusive, but loss of endosomal proteostasis may trigger their formation. In this study, we identified the synaptic compartments where Aβ accumulates, and performed a longitudinal analysis of synaptosomes isolated from brains of TgCRND8 APP transgenic mice of either sex.

View Article and Find Full Text PDF

Vascular perturbations and cerebral hypometabolism are emerging as important components of Alzheimer's disease (AD). While various in vivo imaging modalities have been designed to detect changes of cerebral perfusion and metabolism in AD patients and animal models, study results were often heterogenous with respect to imaging techniques and animal models. We therefore evaluated cerebral perfusion and glucose metabolism of two popular transgenic AD mouse strains, TgCRND8 and 5xFAD, at 7 and 12 months-of-age under identical conditions and analyzed possible molecular mechanisms underlying heterogeneous cerebrovascular phenotypes.

View Article and Find Full Text PDF

Background: Demonstration of intrathecal production of Borrelia-specific antibodies (ITAb) is considered the most specific diagnostic marker of Lyme neuroborreliosis (LNB). Limitations include delayed detectability in early infection and continued presence long after successful treatment. Markers of active inflammation-increased cerebrospinal fluid (CSF) leukocytes, protein, and CXCL13-provide nonspecific markers of active infection.

View Article and Find Full Text PDF

Background: Human milk oligosaccharides (HMO) have been recognized for the protective effects they may elicit among high risk infants. One HMO, disialyllacto-N-tetraose (DSLNT), has been shown to reduce the risk for developing necrotizing enterocolitis in preterm infants.

Research Aims: To measure DSLNT content in the human milk from mothers of preterm infants, and (1) assess variability; (2) establish correlations between maternal factors and/or an infant's risk for developing necrotizing enterocolitis; and (3) determine the effect of pasteurization.

View Article and Find Full Text PDF

Introduction: Benzaldehyde dimethane sulfonate (BEN, DMS612, NSC281612) is a bifunctional alkylating agent currently in clinical trials. We previously characterized the degradation products of BEN in plasma and blood. The conversion of BEN to its carboxylic acid analogue (BA) in whole blood, but not plasma, suggests that an enzyme in RBCs may be responsible for this conversion.

View Article and Find Full Text PDF

Purpose: The interaction of p53 with its negative regulators Mdm2/4 has been widely studied (Khoury and Domling in Curr Pharm Des 18(30):4668-4678, 2012). In p53(+/+) cells, expression of Mdm2/4 leads to p53 turnover, inhibition of downstream transcription, decreasing cell cycle arrest, or apoptosis. We report in vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of YH264, YH263, and WW751, three proposed small molecule inhibitors of the Mdm2/4-p53 interaction.

View Article and Find Full Text PDF

Purpose: Benzaldehyde dimethane sulfonate (DMS612, NSC281612, BEN) is an alkylator with activity against renal cell carcinoma, currently in phase I trials. In blood, BEN is rapidly metabolized into its highly reactive carboxylic acid (BA), presumably the predominant alkylating species. We hypothesized that BEN is metabolized to BA by aldehyde dehydrogenase (ALDH) and aimed to increase BEN exposure in blood and tissues by inhibiting ALDH with disulfiram, thereby shifting BA production from blood to tissues.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds great promise for the treatment of head and neck (H&N) carcinomas where repeated loco-regional therapy often becomes necessary due to the highly aggressive and recurrent nature of the cancers. While interstitial light delivery technologies are being refined for PDT of H&N and other cancers, a parallel clinically relevant research area is the formulation of photosensitizers in nanovehicles that allow systemic administration yet preferential enhanced uptake in the tumor. This approach can render dual-selectivity of PDT, by harnessing both the drug and the light delivery within the tumor.

View Article and Find Full Text PDF

Purpose: Protein kinase D (PKD) mediates diverse biological responses including cell growth and survival. Therefore, PKD inhibitors may have therapeutic potential. We evaluated the in vitro cytotoxicity of two PKD inhibitors, kb-NB142-70 and its methoxy analogue, kb-NB165-09, and examined their in vivo efficacy and pharmacokinetics.

View Article and Find Full Text PDF

The c-Myc oncoprotein is overexpressed in many tumors and is essential for maintaining the proliferation of transformed cells. To function as a transcription factor, c-Myc must dimerize with Max via the basic helix-loop-helix leucine zipper protein (bHLH-ZIP) domains in each protein. The small molecule 7-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-4-amine (10074-G5) binds to and distorts the bHLH-ZIP domain of c-Myc, thereby inhibiting c-Myc/Max heterodimer formation and inhibiting its transcriptional activity.

View Article and Find Full Text PDF

Purpose: Cytidine drugs, such as gemcitabine, undergo rapid catabolism and inactivation by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU), a potent CD inhibitor, has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU is only 20% orally bioavailable, which limits its preclinical evaluation and clinical use.

View Article and Find Full Text PDF