Stroke is the number one cause of morbidity in the United States and number two cause of death worldwide. There is a critical unmet medical need for more effective treatments of ischemic stroke, and this need is increasing with the shift in demographics to an older population. Recently, several studies have reported the therapeutic potential of stem cell-derived exosomes as new candidates for cell-free treatment in stoke.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can be used as a renewable source of endothelial cells for treating cardiovascular disease and other ischemic conditions. Here, we present the derivation and characterization of a panel of distinct clonal embryonic endothelial progenitor cells (eEPCs) lines that were differentiated from human embryonic stem cells (hESCs). The hESC line, ESI-017, was first partially differentiated to produce candidate cultures from which eEPCs were cloned.
View Article and Find Full Text PDFMulticellular life evolved from simple unicellular organisms that could replicate indefinitely, being essentially ageless. At this point, life split into two fundamentally different cell types: the immortal germline representing an unbroken lineage of cell division with no intrinsic endpoint and the mortal soma, which ages and dies. In this review, we describe the germline as clock-free and the soma as clock-bound and discuss aging with respect to three DNA-based cellular clocks (telomeric, DNA methylation, and transposable element).
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2020
Supercentenarians (≥110-year-old, SC) are a uniquely informative population not only because they surpass centenarians in age, but because they appear to age more slowly with fewer incidences of chronic age-related disease than centenarians. We reprogramed donor B-lymphoblastoid cell lines (LCL) derived from a 114-year-old (SC), a 43-year-old healthy disease-free control (HDC) and an 8-year-old with a rapid aging disease (Hutchinson-Gilford progeria syndrome (HGPS)) and compared SC-iPSC to HDC-iPSC and HGPS-iPSCs. Reprogramming to pluripotency was confirmed by pluripotency marker expression and differentiation to 3 germ-layers.
View Article and Find Full Text PDFGrowing evidence supports the antagonistic pleiotropy theory of mammalian aging. Accordingly, changes in gene expression following the pluripotency transition, and subsequent transitions such as the embryonic-fetal transition, while providing tumor suppressive and antiviral survival benefits also result in a loss of regenerative potential leading to age-related fibrosis and degenerative diseases. However, reprogramming somatic cells to pluripotency demonstrates the possibility of restoring telomerase and embryonic regeneration pathways and thus reversing the age-related decline in regenerative capacity.
View Article and Find Full Text PDFThe embedding of small peptide ligands within large inactive pre-pro-precursor proteins encoded by orphan open reading frames (ORFs) makes them difficult to identify and study. To address this problem, we generated oligonucleotide (< 100-400 base pair) combinatorial libraries from either the epidermal growth factor (EGF) ORF that encodes the > 1200 amino acid EGF precursor protein or the orphan ECRG4 ORF, that encodes a 148 amino acid Esophageal Cancer Related Gene 4 (ECRG4), a putative cytokine precursor protein of up to eight ligands. After phage display and 3-4 rounds of biopanning for phage internalization into prostate cancer epithelial cells, sequencing identified the 53-amino acid EGF ligand encoded by the 5' region of the EGF ORF and three distinct domains within the primary sequence of ECRG4: its membrane targeting hydrophobic signal peptide, an unanticipated amino terminus domain at ECRG4 and a C-terminus ECRG4 domain.
View Article and Find Full Text PDFBackground: The role of brown fat in non-shivering thermogenesis and the discovery of brown fat depots in adult humans has made it the subject of intense research interest. A renewable source of brown adipocyte (BA) progenitors would be highly valuable for research and therapy. Directed differentiation of human pluripotent stem (hPS) cells to white or brown adipocytes is limited by lack of cell purity and scalability.
View Article and Find Full Text PDFHere we present the application of deep neural network (DNN) ensembles trained on transcriptomic data to identify the novel markers associated with the mammalian embryonic-fetal transition (EFT). Molecular markers of this process could provide important insights into regulatory mechanisms of normal development, epimorphic tissue regeneration and cancer. Subsequent analysis of the most significant genes behind the DNNs classifier on an independent dataset of adult-derived and human embryonic stem cell (hESC)-derived progenitor cell lines led to the identification of gene as a potential EFT marker.
View Article and Find Full Text PDF