The transcriptional co-repressor C-terminal binding protein (CtBP) interacts with a number of repressor proteins and chromatin modifying enzymes. How the biochemical properties including binding of dinucleotide, oligomerization, and dehydrogenase domains of CtBP1 direct the assembly of a functional co-repressor to influence gene expression is not well understood. In the current study we demonstrate that CtBP1 assembles into a tetramer in a NAD(H)-dependent manner, proceeding through a dimeric intermediate.
View Article and Find Full Text PDFDNA Repair (Amst)
October 2011
Poly(ADP)-ribose polymerase (PARP) inhibitors modify the enzymatic activity of PARP1/2. When certain PARP inhibitors are used either alone or in combination with DNA damage agents they may cause a G2/M mitotic arrest and/or apoptosis in a susceptible genetic context. PARP1 interacts with the cell cycle checkpoint proteins Ataxia Telangectasia Mutated (ATM) and ATM and Rad3-related (ATR) and therefore may influence growth arrest cascades.
View Article and Find Full Text PDFPosttranslational modifications may alter the biochemical functions of a protein by modifying associations with other macromolecules, allosterically altering intrinsic catalytic activities, or determining subcellular localization. The adenovirus-transforming protein E1A is acetylated by its cellular targets, the co-activators CREB-binding protein, p300, and p300/CREB-binding protein-associated factor in vitro and also in vivo at a single lysine residue (Lys(239)) within a multifunctional carboxyl-terminal domain necessary for both nuclear localization and interaction with the transcriptional co-repressor carboxyl-terminal binding protein (CtBP). In contrast to a previous report, we demonstrate that acetylation of Lys(239) does not disrupt CtBP binding and that 12 S E1A-mediated repression of CREB-binding protein-dependent transcription does not require recruitment of CtBP.
View Article and Find Full Text PDF