The hydrogen (H) energy industry has continued to expand in recent years due to the decarbonization of the global energy system and the drive towards sustainable development. Due to hydrogen's high flammability and significant safety risks, the efficient detection of hydrogen has become an increasingly hot issue today. In this work, a new type of relatively fast and responsive conducting polymer sensor has been demonstrated for tracing H gas in a nitrogen environment.
View Article and Find Full Text PDFVersatile nanostructures of conducting polymers are highly relevant based on unique properties, including electrical, optical, and thermal, with changes in morphology. This contribution reports a facile and reproducible synthesis approach for the design of conducting polymer nanostructures from zero- to three-dimensional composites. Two polymerization steps, namely, self-assembly-directed and interface thin layer-templated polymerizations in this synthesis, were kinetically controlled to fabricate such nanostructures directly.
View Article and Find Full Text PDFIn recent decades, there has been a great deal of interest in conducting polymers due to their broad applications. At the same time, various synthetic techniques have been developed to produce various nanostructures of the conducting polymers with their fascinating properties. However, the techniques for the manufacture of 2D nanosheets are either complex or expensive.
View Article and Find Full Text PDF