Publications by authors named "Dana Hutchinson"

Objective: Simultaneous activation of β2- and β3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of β1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel β2-and β3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the β-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic.

View Article and Find Full Text PDF

Truncation of the C-terminal tail of the β -AR, transfection of βARKct or over-expression of a kinase-dead GRK mutant reduces isoprenaline-stimulated glucose uptake, indicating that GRK is important for this response. We explored whether phosphorylation of the β -AR by GRK2 has a role in glucose uptake or if this response is related to the role of GRK2 as a scaffolding protein. CHO-GLUT4myc cells expressing wild-type and mutant β -ARs were generated and receptor affinity for [ H]-CGP12177A and density of binding sites determined together with the affinity of isoprenaline and BRL37344.

View Article and Find Full Text PDF

Diet-induced obesity (DIO) is a contributor to co-morbidities, resulting in alterations in hormones, lipids, and low-grade inflammation, with the cannabinoid type 2 receptor (CB) contributing to the inflammatory response. The effects of modulating CB with pharmacological treatments on inflammation and adaptations to the obese state are not known. Therefore, we aimed to investigate the molecular mechanisms in adipose tissue of CB agonism and CB antagonism treatment in a DIO model.

View Article and Find Full Text PDF

Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as β-adrenoceptor antagonists (β-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality.

View Article and Find Full Text PDF

Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB). This research aimed to determine if treatment with the global CB antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a "browning" of white adipose tissue (WAT) defined by UCP1 expression levels.

View Article and Find Full Text PDF

The β -adrenergic receptor (β -AR) is found in several tissues such as adipose tissue and urinary bladder. It is a therapeutic target because it plays a role in thermogenesis, lipolysis, and bladder relaxation. Two β -AR agonists are used clinically: mirabegron 1 and vibegron 2, which are indicated for overactive bladder syndrome.

View Article and Find Full Text PDF

Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α-AR) in the cardiovascular system and the potential to influence function/signalling activities.

View Article and Find Full Text PDF

Background And Purpose: The physiological role of vascular β -adrenoceptors is not fully understood. Recent evidence suggests cardiac β -adrenoceptors are functionally effective after down-regulation of β /β -adrenoceptors. The functional interaction between the β -adrenoceptor and other β-adrenoceptor subtypes in rat striated muscle arteries was investigated.

View Article and Find Full Text PDF

The β -adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at β-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [ H]-2-deoxyglucose uptake, cellular glycolysis, and O consumption.

View Article and Find Full Text PDF

Objective: β-adrenoceptor mediated activation of brown adipose tissue (BAT) has been associated with improvements in metabolic health in models of type 2 diabetes and obesity due to its unique ability to increase whole body energy expenditure, and rate of glucose and free fatty acid disposal. While the thermogenic arm of this phenomenon has been studied in great detail, the underlying mechanisms involved in β-adrenoceptor mediated glucose uptake in BAT are relatively understudied. As β-adrenoceptor agonist administration results in increased hepatic gluconeogenesis that can consequently result in secondary pancreatic insulin release, there is uncertainty regarding the importance of insulin and the subsequent activation of its downstream effectors in mediating β-adrenoceptor stimulated glucose uptake in BAT.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphocytes that play a major role in immunosurveillance against tumor initiation and metastatic spread. The signals and checkpoints that regulate NK cell fitness and function in the tumor microenvironment are not well defined. Transforming growth factor-β (TGF-β) is a suppressor of NK cells that inhibits interleukin-15 (IL-15)-dependent signaling events and increases the abundance of receptors that promote tissue residency.

View Article and Find Full Text PDF

The type 2 diabetes epidemic makes it important to find insulin-independent ways to improve glucose homeostasis. This study examines the mechanisms activated by a dual β-/β-adrenoceptor agonist, BRL37344, to increase glucose uptake in skeletal muscle and its effects on glucose homeostasis in vivo. We measured the effect of BRL37344 on glucose uptake, glucose transporter 4 (GLUT4) translocation, cAMP levels, β-adrenoceptor desensitization, β-arrestin recruitment, Akt, AMPK, and mammalian target of rapamycin (mTOR) phosphorylation using L6 skeletal muscle cells as a model.

View Article and Find Full Text PDF

Adrenoceptors play an important role in adipose tissue biology and physiology that includes regulating the synthesis and storage of triglycerides (lipogenesis), the breakdown of stored triglycerides (lipolysis), thermogenesis (heat production), glucose metabolism, and the secretion of adipocyte-derived hormones that can control whole-body energy homeostasis. These processes are regulated by the sympathetic nervous system through actions at different adrenoceptor subtypes expressed in adipose tissue depots. In this review, we have highlighted the role of adrenoceptor subtypes in white, brown, and brite adipocytes in both rodents and humans and have included detailed analysis of adrenoceptor expression in human adipose tissue and clonally derived adipocytes.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common and aggressive type of primary brain cancer. With median survival of less than 15 months, identification and validation of new GBM therapeutic targets is of critical importance.

Results: In this study we tested expression and performed pharmacological characterization of the calcitonin receptor (CTR) as well as other members of the calcitonin family of receptors in high-grade glioma (HGG) cell lines derived from individual patient tumours, cultured in defined conditions.

View Article and Find Full Text PDF

A vital role of adrenoceptors in metabolism and energy balance has been well documented in the heart, skeletal muscle, and adipose tissue. It has been only recently demonstrated, however, that activation of the mechanistic target of rapamycin (mTOR) makes a significant contribution to various metabolic and physiological responses to adrenoceptor agonists. mTOR exists as two distinct complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) and has been shown to play a critical role in protein synthesis, cell proliferation, hypertrophy, mitochondrial function, and glucose uptake.

View Article and Find Full Text PDF

OBJECTIVE To determine whether the degree of CT attenuation of muscle would differ between healthy old and young dogs. ANIMALS 10 healthy old (> 8 years old) and 9 healthy young (1 to 5 years old) Labrador Retrievers with a body condition score of 5 or 6 on a 9-point scale. PROCEDURES CT was performed with the dogs mildly sedated.

View Article and Find Full Text PDF

Preterm infants frequently suffer cardiovascular compromise, with hypotension and/or low systemic blood flow, leading to tissue hypoxia-ischemia (HI). Many preterm infants respond inadequately to inotropic treatments using adrenergic agonists such as dobutamine (DB) or dopamine (DA). This may be because of altered cardiac adrenoceptor expression because of tissue HI or prolonged exposure to adrenergic agonists.

View Article and Find Full Text PDF

The recruitment of brite (or beige) adipocytes has been advocated as a means to combat obesity, due to their ability to phenotypically resemble brown adipocytes (BA). Lineage studies indicate that brite adipocytes are formed by differentiation of precursor cells or by direct conversion of existing white adipocytes, depending on the adipose depot examined. We have systematically compared the gene expression profile and a functional output (oxygen consumption) in mouse adipocytes cultured from two contrasting depots, namely interscapular brown adipose tissue, and inguinal white adipose tissue (iWAT), following treatment with a known browning agent, the peroxisome proliferator-activated receptor (PPARγ) activator rosiglitazone.

View Article and Find Full Text PDF

Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and hybridisation that mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract.

View Article and Find Full Text PDF

Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB) is more abundant in the periphery, including the immune cells.

View Article and Find Full Text PDF

Unlabelled: The β -adrenoceptor was initially an attractive target for several pharmaceutical companies due to its high expression in rodent adipose tissue, where its activation resulted in decreased adiposity and improved metabolic outputs (such as glucose handling) in animal models of obesity and Type 2 diabetes. However, several drugs acting at the β -adrenoceptor failed in clinical trials. This was thought to be due to their lack of efficacy at the human receptor.

View Article and Find Full Text PDF

The capacity of G protein-coupled receptors to modulate mechanistic target of rapamycin (mTOR) activity is a newly emerging paradigm with the potential to link cell surface receptors with cell survival. Cardiomyocyte viability is linked to signalling pathways involving Akt and mTOR, as well as increased glucose uptake and utilization. Our aim was to determine whether the α-adrenoceptor (AR) couples to these protective pathways, and increased glucose uptake.

View Article and Find Full Text PDF

Recruitment and activation of brite (or beige) adipocytes has been advocated as a potential avenue for manipulating whole-body energy expenditure. Despite numerous studies illustrating the differences in gene and protein markers between brown, brite and white adipocytes, there is very little information on the adrenergic regulation and function of these brite adipocytes. We have compared the functional (cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, extracellular acidification rates, calcium influx) profiles of mouse adipocytes cultured from three contrasting depots, namely interscapular brown adipose tissue, and inguinal or epididymal white adipose tissues, following chronic treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone.

View Article and Find Full Text PDF