Publications by authors named "Dana Greene-Schloesser"

Over its 25 years, the National Institutes of Health (NIH) Office of Behavioral and Social Sciences Research (OBSSR) has played a significant role in a number of behavioral and social science research advances that improve health.

View Article and Find Full Text PDF

Purpose: To determine if the brain's response to single doses predicts its response to 'biologically equivalent' fractionated doses.

Methods: Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of (137)Cs γ rays or their 'biologically equivalent' 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively.

View Article and Find Full Text PDF

We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12-14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate.

View Article and Find Full Text PDF

Brain tumor patients often develop cognitive impairment months to years after partial or fractionated whole-brain irradiation (WBI). Studies suggest that neuroinflammation and decreased hippocampal neurogenesis contribute to the pathogenesis of radiation-induced brain injury. In this study, we determined if the peroxisomal proliferator-activated receptor (PPAR) δ agonist GW0742 can prevent radiation-induced brain injury in C57Bl/6 wild-type (WT) and PPARδ knockout (KO) mice.

View Article and Find Full Text PDF

Objective: In a retrospective review to assess neuroanatomical targets of radiation-induced cognitive decline, dose volume histogram (DVH) analyses of specific brain regions of interest (ROI) are correlated to neurocognitive performance in 57 primary brain tumor survivors.

Methods: Neurocognitive assessment at baseline included Trail Making Tests A/B, a modified Rey-Osterreith Complex Figure, California or Hopkins Verbal Learning Test, Digit Span, and Controlled Oral Word Association. DVH analysis was performed for multiple neuroanatomical targets considered to be involved in cognition.

View Article and Find Full Text PDF

Each year, approximately 200,000 patients in the United States will receive partial- or whole-brain irradiation for the treatment of primary or metastatic brain cancer. Early and delayed radiation effects are transient and reversible with modern therapeutic standards; yet, late radiation effects (≥6 months postirradiation) remain a significant risk, resulting in progressive cognitive impairment. These risks include functional deficits in memory, attention, and executive function that severely affect the patient's quality of life.

View Article and Find Full Text PDF

Approximately 100,000 patients per year in the United States with primary and metastatic brain tumor survive long enough (>6 months) to develop radiation-induced brain injury. Before 1970, the human brain was thought to be radioresistant; the acute central nervous system (CNS) syndrome occurs after single doses of ≥ 30 Gy, and white matter necrosis can occur at fractionated doses of ≥ 60 Gy. Although white matter necrosis is uncommon with modern radiation therapy techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become increasingly important, having profound effects on quality of life.

View Article and Find Full Text PDF

The use of behavioral testing has become an invaluable tool for assessing the efficacy of therapeutics for a variety of disorders of the central nervous system. This chapter will describe in detail several behavioral paradigms to evaluate the efficacy of PPAR agonists to modulate cognitive impairments in rodent models. When used together as a battery these procedures allow for a global assessment of cognition.

View Article and Find Full Text PDF

Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life.

View Article and Find Full Text PDF

We hypothesized that chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, to young adult male rats would prevent/ameliorate fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Eighty 12-14-week-old young adult male Fischer 344 rats received either: (1) sham irradiation, (2) 40 Gy of fractionated whole-brain irradiation delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation plus continuous administration of 15 mg/L of ramipril in the drinking water starting 3 days before irradiation, or (4) fractionated whole-brain irradiation plus ramipril. Cognitive function was assessed using a perirhinal cortex-dependent version of the novel object recognition task 26 weeks after irradiation.

View Article and Find Full Text PDF