A key step in creating efficient and long-lasting catalysts is understanding their deactivation mechanism(s). On this basis, the behavior of a series of Pd/corundum materials during several hydrogen adsorption/desorption cycles was studied using temperature-programmed desorption coupled with mass spectrometry and aberration-corrected transmission electron microscopy. The materials, prepared by impregnation and by sputtering, presented uniform well-dispersed Pd nanoparticles.
View Article and Find Full Text PDFThe development of future mobility ( electric vehicles) requires supercapacitors with high voltage and high energy density. Conventional active carbon-based supercapacitors have almost reached their limit of energy density which is still far below the desired performance. Advanced materials, particularly metal hydroxides/oxides with tailored structure are promising supercapacitor electrodes to push the limit of energy density.
View Article and Find Full Text PDFOne of the major challenges in the circular economy relating to food packaging is the elimination of metallised film which is currently the industry standard approach to achieve the necessary gas barrier performance. Here, we report the synthesis of high aspect ratio 2D non-toxic layered double hydroxide (LDH) nanosheet dispersions using a non-toxic exfoliation method in aqueous amino acid solution. High O and water vapour barrier coating films can be prepared using food safe liquid dispersions through a bar coating process.
View Article and Find Full Text PDFA series of silica@layered double hydroxides (SiO@MgAl-CO-AMO-LDHs) have been synthesised by in situ precipitation of MgAl-CO-LDH at room temperature in the presence of amorphous spherical silica particles (∼500 nm). We have systematically investigated a number of synthetic parameters in order to evaluate their effects on the composition, morphological and physical properties of the isolated materials. Syntheses carried out at moderate stirring speeds (e.
View Article and Find Full Text PDF