Publications by authors named "Dana E Hunt"

Global change mediated shifts in ocean temperature and circulation patterns, compounded by human activities, are leading to the expansion of marine oxygen minimum zones (OMZs) with concomitant alterations in nutrient and climate-active trace gas cycling. While many studies have reported distinct bacterial communities within OMZs, much of this research compares across depths rather with oxygen status and does not include eukayrotic microbes. Here, we investigated the Bay of Bengal (BoB) OMZ, where low oxygen conditions are persistent, but trace levels of oxygen remain (< 20 μM from 200 to 500 m).

View Article and Find Full Text PDF

In natural systems, organisms are embedded in complex networks where their physiology and community composition is shaped by both biotic and abiotic factors. Therefore, to assess the ecosystem-level effects of contaminants, we must pair complex, multi-trophic field studies with more targeted hypothesis-driven approaches to explore specific actors and mechanisms. Here, we examine aquatic microbiome responses to long-term additions of commercially-available metallic nanoparticles [copper-based (CuNPs) or gold (AuNPs)] and/or nutrients in complex, wetland mesocosms over 9 months, allowing for a full growth cycle of the aquatic plants.

View Article and Find Full Text PDF

Mesoscale oceanographic features, including eddies, have the potential to alter productivity and other biogeochemical rates in the ocean. Here, we examine the microbiome of a cyclonic, Gulf Stream frontal eddy, with a distinct origin and environmental parameters compared to surrounding waters, in order to better understand the processes dominating microbial community assembly in the dynamic coastal ocean. Our microbiome-based approach identified the eddy as distinct from the surround Gulf Stream waters.

View Article and Find Full Text PDF

Disturbances, here defined as events that directly alter microbial community composition, are commonly studied in host-associated and engineered systems. In spite of global change both altering environmental averages and increasing extreme events, there has been relatively little research into the causes, persistence and population-level impacts of disturbance in the dynamic coastal ocean. Here, we utilize 3 years of observations from a coastal time series to identify disturbances based on the largest week-over-week changes in the microbiome (i.

View Article and Find Full Text PDF

While planktonic microbes play key roles in the coastal oceans, our understanding of heterotrophic microeukaryotes' ecology, particularly their spatiotemporal patterns, drivers, and functions, remains incomplete. In this study, we focus on a ubiquitous marine fungus-like protistan group, the Labyrinthulomycetes, whose biomass can exceed that of bacterioplankton in coastal oceans but whose ecology is largely unknown. Using quantitative PCR and amplicon sequencing of their 18S rRNA genes, we examine their community variation in repeated five-station transects across the nearshore-to-offshore surface waters of North Carolina, United States.

View Article and Find Full Text PDF

Labyrinthulomycetes protists are an important heterotrophic component of microeukaryotes in the world's oceans, but their distribution patterns and ecological roles are poorly understood in pelagic waters. This study employed flow cytometry and high-throughput sequencing to characterize the abundance, diversity, and community structure of Labyrinthulomycetes in the pelagic Eastern Indian Ocean. The total Labyrinthulomycetes abundance varied much more among stations than did the abundance of prokaryotic plankton, reaching over 1,000 cells mL at a few "bloom" stations.

View Article and Find Full Text PDF

Evidence increasingly suggests planktonic fungi (or mycoplankton) play an important role in marine food webs and biogeochemical cycles. In order to better understand their ecological role and how oceanographic gradients from the coastal to open ocean shape the mycoplankton community, molecular approaches were used to study fungal dynamics along a repeatedly sampled, five-station transect beginning at the mouth of an estuary and continuing 87 km across the continental shelf to the oligotrophic waters at the boundary of the Sargasso Sea. Similar to patterns in chlorophyll , fungal 18S rRNA gene abundance showed a sharp decrease from nearshore to offshore stations.

View Article and Find Full Text PDF

Phytoplankton support complex bacterial microbiomes that rely on phytoplankton-derived extracellular compounds and perform functions necessary for algal growth. Recent work has revealed sophisticated interactions and exchanges of molecules between specific phytoplankton-bacteria pairs, but the role of host genotype in regulating those interactions is unknown. Here, we show how phytoplankton microbiomes are shaped by intraspecific genetic variation in the host using global environmental isolates of the model phytoplankton host and a laboratory common garden experiment.

View Article and Find Full Text PDF

The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean.

View Article and Find Full Text PDF

Heterotrophic microbes play a key role in remineralizing organic material in the coastal ocean. While there is a significant body of literature examining heterotrophic bacterioplankton and phytoplankton communities, much less is known about the diversity, dynamics, and ecology of eukaryotic heterotrophs. Here, we focus on the Labyrinthulomycetes, a fungus-like protistan group whose biomass can exceed that of the bacterioplankton in coastal waters.

View Article and Find Full Text PDF

Ambient conditions shape microbiome responses to both short- and long-duration environment changes through processes including physiological acclimation, compositional shifts, and evolution. Thus, we predict that microbial communities inhabiting locations with larger diel, episodic, and annual variability in temperature and pH should be less sensitive to shifts in these climate-change factors. To test this hypothesis, we compared responses of surface ocean microbes from more variable (nearshore) and more constant (offshore) sites to short-term factorial warming (+3 °C) and/or acidification (pH -0.

View Article and Find Full Text PDF

Recent studies have focused on linking marine microbial communities with environmental factors, yet, relatively little is known about the drivers of microbial community patterns across the complex gradients from the nearshore to open ocean. Here, we examine microbial dynamics in 15 five-station transects beginning at the estuarine Piver's Island Coastal Observatory (PICO) time-series site and continuing 87 km across the continental shelf to the oligotrophic waters of the Sargasso Sea. 16S rRNA gene libraries reveal strong clustering by sampling site with distinct nearshore, continental shelf and offshore oceanic communities.

View Article and Find Full Text PDF

Most studies of bacterial exposure to environmental contaminants focus on acute treatments; however, the impacts of single, high-dose exposures on microbial communities may not readily be extended to the more likely scenario of chronic, low-dose contaminant exposures. Here, in a year-long, wetland mesocosm experiment, we compared microbial community responses to pulse (single 450 mg dose of silver) and chronic (weekly 8.7 mg doses of silver for 1 year) silver nanoparticle (Ag NP) treatments, as well as a chronic treatment of "aged" sulfidized silver nanoparticles (AgS NPs).

View Article and Find Full Text PDF

There is a growing awareness of the ecological and biogeochemical importance of fungi in coastal marine systems. While highly diverse fungi have been discovered in these marine systems, still, little is known about their seasonality and associated drivers in coastal waters. Here, we examined fungal communities over 3 years of weekly sampling at a dynamic, temperate coastal site (Pivers Island Coastal Observatory [PICO], Beaufort, NC, USA).

View Article and Find Full Text PDF

Adsorption of dissolved organic matter (DOM) can alter the environmental fate, bioavailability and toxicity of silver nanoparticles (Ag NPs). However, a number of questions remain about DOM's ability to modify nanotoxicity. Here, we examine the impact of humic acid (HA, as a model DOM) on the toxicity of Ag NPs (10 μg L) in the marine clam Ruditapes philippinarum.

View Article and Find Full Text PDF

Phytoplankton often both provision and depend on heterotrophic bacteria. In order to investigate these relationships further, we sequenced draft genomes of three bacterial isolates from cultures of the marine diatom to identify metabolic functions that may support interactions with .

View Article and Find Full Text PDF

Marine microbes exhibit seasonal cycles in community composition, yet the key drivers of these patterns and microbial population fidelity to specific environmental conditions remain to be determined. To begin addressing these questions, we characterized microbial dynamics weekly for 3 years at a temperate, coastal site with dramatic environmental seasonality. This high-resolution time series reveals that changes in microbial community composition are not continuous; over the duration of the time series, the community instead resolves into distinct summer and winter profiles with rapid spring and fall transitions between these states.

View Article and Find Full Text PDF

Unlabelled: There is a growing recognition of the roles of marine microenvironments as reservoirs of biodiversity and as sites of enhanced biological activity and in facilitating biological interactions. Here, we examine the bacterial community inhabiting free-living and particle-associated seawater microenvironments at the Pivers Island Coastal Observatory (PICO). 16S rRNA gene libraries from monthly samples (July 2013 to August 2014) were used to identify microbes in seawater in four size fractions: >63 μm (zooplankton and large particles), 63 to 5 μm (particles), 5 to 1 μm (small particles/dividing cells), and <1 μm (free-living prokaryotes).

View Article and Find Full Text PDF

Microbes numerically dominate aquatic ecosystems and play key roles in the biogeochemistry and the health of these environments. Due to their short generations times and high diversity, microbial communities are among the first responders to environmental changes, including natural and anthropogenic disturbances such as storms, pollutant releases, and upwelling. These disturbances affect members of the microbial communities both directly and indirectly through interactions with impacted community members.

View Article and Find Full Text PDF

Time series studies have shown that some bacterial taxa occur only at specific times of the year while others are ubiquitous in spite of seasonal shifts in environmental variables. Here, we ask if these ubiquitous clades are generalists that grow over a wide range of environmental conditions, or clusters of strain-level environmental specialists. To answer this question, vibrio strains isolated at a coastal time series were phylogenetically and physiologically characterized revealing three dominant strategies within the vibrio: mesophiles, psychrophiles and apparently generalist broad thermal range clades.

View Article and Find Full Text PDF

Despite the growing use of carbon nanomaterials in commercial applications, very little is known about the fate of these nanomaterials once they are released into the environment. The carbon-carbon bonding of spherical sp(2) hybridized fullerene (C60) forms a strong and resilient material that resists biodegradation. Moreover, C60 is widely reported to be bactericidal.

View Article and Find Full Text PDF

A Gram-staining-negative, curved-rod-shaped bacterium with close resemblance to Vibrio cholerae, the aetiological agent of cholera, was isolated over the course of several years from coastal brackish water (17 strains) and from clinical cases (two strains) in the United States. 16S rRNA gene identity with V. cholerae exceeded 98 % yet an average nucleotide identity based on genome data of around 86 % and multi locus sequence analysis of six housekeeping genes (mdh, adk, gyrB, recA, pgi and rpoB) clearly delineated these isolates as a distinct genotypic cluster within the V.

View Article and Find Full Text PDF

The use of antimicrobial silver nanoparticles (AgNPs) in consumer-products is rising. Much of these AgNPs are expected to enter the wastewater stream, with up to 10% of that eventually released as effluent into aquatic ecosystems with unknown ecological consequences. We examined AgNP impacts on aquatic ecosystems by comparing the effects of two AgNP sizes (12 and 49 nm) to ionic silver (Ag(+); added as AgNO3), a historically problematic contaminant with known impacts.

View Article and Find Full Text PDF

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years.

View Article and Find Full Text PDF