Publications by authors named "DanDan Cui"

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Suppressing tumor metastasis is a crucial strategy for improving survival rates in patients with colorectal cancer (CRC), with cancer stem cells (CSCs) being the primary drivers of metastasis. Current therapeutic approaches targeting CSCs are limited, and their molecular mechanisms remain unclear. To address this challenge, a biomimetic nanoparticle delivery system, CMD-BHQ3-PTL/DOX@RBCM is developed, to deliver the stem cell regulator, piceatannol (PTL).

View Article and Find Full Text PDF

Brain metastasis (BrM) remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumor barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumor of brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the antitumor response against BrM.

View Article and Find Full Text PDF

Surface engineering of BiVO photoanodes is effective and feasible for photoelectrochemical (PEC) water splitting. To achieve superior PEC performance, however, more than one surface engineering method is usually indispensable, for which a positive synergistic effect is vital and thus highly desired. Herein, it is reported that the incorporation of borate moieties into ultrathin p-type NiO catalysts can induce the reconfiguration of surface catalytic sites to form new highly active species, in addition to enhanced fast charge separation and transfer.

View Article and Find Full Text PDF

The development of hydrogen technologies is at the heart of a green economy. As prerequisite for implementation of hydrogen storage, active and stable catalysts for (de)hydrogenation reactions are needed. So far, the use of precious metals associated with expensive costs dominates in this area.

View Article and Find Full Text PDF

Oyster farming activities play a pivotal role in the biogeochemical cycles of coastal marine ecosystems, particularly in terms of sedimentary carbon cycling. To gain deep insights into the influence of expanding oyster culture on the sedimentary carbon cycle, surface sediments were collected from the Maowei Sea, which is the largest oyster farming bay in south China, based on six filed surveys between July 2010 and December 2022. The sediment samples were analyzed for total organic carbon (TOC), total nitrogen (TN), stable carbon and nitrogen isotopes (δC and δN) to evaluate the inter-annual variations in the source contribution to sedimentary organic matter (SOM).

View Article and Find Full Text PDF
Article Synopsis
  • - Non-small cell lung cancer (NSCLC) has a high rate of mortality and is influenced by circular RNAs (circRNAs). This study focuses on circ_0028826's role in NSCLC development.
  • - Researchers employed various techniques like RT-qPCR and western blotting to explore how circ_0028826 affects cell proliferation, migration, and apoptosis in NSCLC, including in vivo tumor models.
  • - Findings show that circ_0028826 promotes NSCLC by increasing IDH2 levels through inhibition of miR-758-3p, suggesting that targeting this mechanism could be a potential treatment strategy for NSCLC.
View Article and Find Full Text PDF
Article Synopsis
  • Seawater physicochemical parameters and environmental capacity are key indicators of marine ecological health, significantly impacting material cycles.
  • A study conducted in Dapeng Bay during wet and dry seasons revealed NH-N dominated during wet months, while NO-N was more prevalent in dry months, with overall low eutrophication indices indicating poor conditions.
  • Despite good overall water quality except for one station, a concerning negative correlation between dissolved oxygen and dissolved inorganic phosphorus was noted, suggesting that biological activity drives nutrient dynamics in the bay.
View Article and Find Full Text PDF

Background: Properly designed second near-infrared (NIR-II) nanoplatform that is responsive tumor microenvironment can intelligently distinguish between normal and cancerous tissues to achieve better targeting efficiency. Conventional photoacoustic nanoprobes are always "on", and tumor microenvironment-responsive nanoprobe can minimize the influence of endogenous chromophore background signals. Therefore, the development of nanoprobe that can respond to internal tumor microenvironment and external stimulus shows great application potential for the photoacoustic diagnosis of tumor.

View Article and Find Full Text PDF

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development.

View Article and Find Full Text PDF

The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant health problem with elevated mortality rates, prompting intense exploration of its complex molecular mechanisms and innovative therapeutic avenues. Resveratrol (RSV), recognised for its anticancer effects through SIRT1 activation, is a promising candidate for CRC treatment. This study focuses on elucidating RSV's role in CRC progression, particularly its effect on autophagy-related apoptosis.

View Article and Find Full Text PDF

Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of and the occurrence of metabolic diseases. , a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health.

View Article and Find Full Text PDF

Jasmonates, such as jasmonic acid (JA) and methyl jasmonate (MeJA), are crucial aspect of black tea quality. However, lipids species, hormones, and genes regulated mechanism in the jasmonate biosynthesis during black tea processing are lacking. In this study, we employed lipidomics, hormone metabolism analysis, and transcriptome profiling of genes associated with the MeJA biosynthesis pathway to investigate these factors.

View Article and Find Full Text PDF

Tomato is the vegetable with the largest greenhouse area in China, and low temperature is one of the main factors affecting tomato growth, yield, and quality. Hydrogen sulfide (HS) plays an important role in regulating plant chilling tolerance, but its downstream cascade reaction and mechanism remain unclear. Mitogen-activated protein kinases (MAPK/MPKs) are closely related to a variety of signaling substances in stress signal transmission.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Gui Shen Wan (GSW) stands out as a promising therapeutic approach for addressing Premature Ovarian Insufficiency (POI). With deep roots in traditional medicine, GSW highlights the ethnopharmacological significance of herbal interventions in addressing nuanced aspects of women's health, with a specific emphasis on ovarian functionality. Recognizing the importance of GSW in gynecological contexts resonates with a rich tradition of using botanical formulations to navigate the intricacies of reproductive health.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) is particularly aggressive and currently lacks effective targeted treatments, prompting research into potential therapies like Isobavachalcone (IBC).
  • IBC, derived from Psoralea corylifolia L., has been identified as a natural inhibitor of the SIRT2 enzyme, demonstrating significant anticancer effects through in vitro and in vivo studies.
  • The compound works by stabilizing SIRT2, disrupting key cellular interactions, and activating pathways that lead to reduced tumor growth and enhanced apoptosis, presenting IBC as a promising candidate for future drug development against TNBC.
View Article and Find Full Text PDF

Hexagrammos otakii is favored by consumers and aquaculture practitioners because of its strong adaptability and fast growth. However, recently, frequent outbreaks of diseases in the breeding of H. otakii have led to significant economic losses, especially due to bacterial diseases, which limit the healthy breeding of H.

View Article and Find Full Text PDF

Photoacoustic (PA) theranostics is a new emerging field that uniquely combines diagnosis and treatment in one modality. However, its current status is compromised by the indispensable dependence on nonreversible phase-change nanoprobes that provides one-time-only action. Here, we demonstrate a picosecond-laser-pumped ultrafast PA cavitation technique for highly efficient shockwave theranostics, guaranteeing sustained PA cavitation by using non-phase-change nanoprobes.

View Article and Find Full Text PDF

To investigate the effect of pretreatment of tumor biopsy specimens using fixed, dehydrated and transparent three-in-one composite environmental protection reagent ultrasound tissue rapid processing technique on subsequent detection. From April 2020 to October 2020, a total of 100 cases including breast, stomach and lung tissues were submitted to our diagnosis, and 3 specimens were collected from each specimen and divided into the control group (traditional biopsy tissue processing method), experimental group 1 (3.7% neutral buffered formaldehyde fixation, compound environmental protection reagent rapid ultrasound tissue processing technique, processing temperature 48 °C, time 20 minutes/time, twice, wax immersion temperature 62 °C, time 25 minutes) and experimental group 2 (3.

View Article and Find Full Text PDF

Recently, photoacoustic (PA) cavitation-mediated therapy has become the focus of research owing to its advantage of inhibiting drug or radiation resistance; however, its application is limited because it relies on nanodroplets with one-time action. Herein, we demonstrate a femtosecond-laser-pumped ultrafast PA cavitation technique for highly efficient shockwave theranostics using niobium carbide (NbC) coated with polyvinylpyrrolidone-40000 (PVP), producing sustainable PA cavitation with non-phase-change nanoprobes, which effectively gets rid of the dependence on nanodroplets, guaranteeing multiple treatments. Under femtosecond (fs) laser irradiation, given that the thermal confinement regime could be well satisfied, the NbC-PVP nanosheets (NSs) were quickly heated, forming localized overheated nanospots with the temperature exceeding the phase-transition threshold of the surroundings, leading to precise cavitation and explosion at the tumor sites.

View Article and Find Full Text PDF

The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu-N-C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN moieties with double-N-bridged adjacent metal-N clusters decorated on a nitrogen-doped carbon support.

View Article and Find Full Text PDF

Introduction: Artemisinin (ART) is very common as a diet additive due to its immunoregulatory activities. Nonetheless, the immunoregulatory mechanism of ART in marine fish remains unknown. This study comprehensively examined the effects and explored the potential mechanism of ART ameliorating intestinal immune disease (IID) in fat greenlings .

View Article and Find Full Text PDF

Accurately monitoring the three-dimensional (3D) temperature distribution of the tumor area is a critical task that remains challenging in precision cancer photothermal (PT) therapy. Here, by ingeniously constructing a polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO@PEG) photoacoustic (PA) nanothermometer (NThem) that linearly and reversibly responds to the thermal field near the human-body-temperature range, the authors propose a method to realize quantitative 3D temperature rendering of deep tumors to promote precise cancer PT therapy. The prepared NThems exhibit a mild phase transition from the monoclinic phase to the rutile phase when their temperature grows from 35 to 45 °C, with the optical absorption sharply increased ∼2-fold at 1064 nm in an approximately linear manner in the near-infrared-II (NIR-II) region, enabling W-VO@PEG to be used as NThems for quantitative temperature monitoring of deep tumors with basepoint calibration, as well as diagnostic agents for PT therapy.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has had a significant impact on physical and mental health, while physical activity and sleep are two important indicators of the impact that have been explored in recent studies. However, the results of studies with different measurement methods and populations with different levels of physical activity have been diverse in that physical activity and sleep are affected by the COVID-19 pandemic in some studies but not in others. Our study aimed to investigate the impact of the COVID-19 pandemic on physical activity and sleep and the role of measurement methods and populations on results.

View Article and Find Full Text PDF