Histone acetylation and H3K4 trimethylation (H3K4me3) are associated with active transcription. However, how they cooperate to regulate transcription in plants remains largely unclear. Our study revealed that GLOBAL TRANSCRIPTION FACTOR GROUP E 4 (GTE4) binds to acetylated histones and forms a complex with the functionally redundant H3K4me3-binding EMSY-like proteins EML1 or EML2 (EML1/2) in Arabidopsis thaliana.
View Article and Find Full Text PDFTrimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we find that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3, along with a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1 (PRC1), thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome.
View Article and Find Full Text PDFHistone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana.
View Article and Find Full Text PDFWRKY transcription factors in plants are known to be able to mediate either transcriptional activation or repression, but the mechanism regulating their transcriptional activity is largely unclear. We found that group IId WRKY transcription factors interact with OBERON (OBE) proteins, forming redundant WRKY-OBE complexes in Arabidopsis thaliana. The coiled-coil domain of WRKY transcription factors binds to OBE proteins and is responsible for target gene selection and transcriptional repression.
View Article and Find Full Text PDFAlthough a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6).
View Article and Find Full Text PDFAlthough SWI/SNF chromatin remodelling complexes are known to regulate diverse biological functions in plants, the classification, compositions and functional mechanisms of the complexes remain to be determined. Here we comprehensively characterized SWI/SNF complexes by affinity purification and mass spectrometry in Arabidopsis thaliana, and found three classes of SWI/SNF complexes, which we termed BAS, SAS and MAS (BRM-, SYD- and MINU1/2-associated SWI/SNF complexes). By investigating multiple developmental phenotypes of SWI/SNF mutants, we found that three classes of SWI/SNF complexes have both overlapping and specific functions in regulating development.
View Article and Find Full Text PDFAlthough previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering.
View Article and Find Full Text PDF