The rapid detection of pollutants with high sensitivity and selectivity is of considerable significance for security screening, environmental safety, and human health. In this study, we prepared persistent luminescence nanoparticles (PLNPs) and constructed a label-free sensor for sensitive and selective detection of pollutants in real samples and test papers. Following excitation, PLNPs could store absorbed light energy and release it in the form of luminescence.
View Article and Find Full Text PDFAccurate detection and imaging of tumor-related mRNA in living cells hold great promise for early cancer detection. However, currently, most probes designed to image intracellular mRNA confront intrinsic interferences arising from complex biological matrices and resulting in inevitable false-positive signals. To circumvent this problem, an intracellular DNA nanoprobe, termed DNA tetrahedron nanotweezer (DTNT), was developed to reliably image tumor-related mRNA in living cells based on the FRET (fluorescence resonance energy transfer) "off" to "on" signal readout mode.
View Article and Find Full Text PDFA universal aptameric system based on the taking advantage of double-stranded DNA/perylene diimide (dsDNA/PDI) as the signal probe was developed for multiplexed detection of small molecules. Aptamers are single-stranded DNA or RNA oligonucleotides which are selected in vitro by a process known as systematic evolution of ligands by exponential enrichment. In this work, we synthesized a new kind of PDI and reported this aggregated PDI could quench the double-stranded DNA (dsDNA)-labeled fluorophores with a high quenching efficiency.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (CC) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210nm) and the two well-resolved emission peaks separated by 140nm.
View Article and Find Full Text PDFThewater-soluble CP was conjugatedwith a rhodamine spirolactam for the first time to develop a new FRET-based ratiometric fluorescence sensing platform(CP 1) for intracellular metal-ion probing. CP 1 exhibits excellent water-solubility with twowell-resolved emission peaks, which benefit ratiometric intracellular imaging applications.
View Article and Find Full Text PDFH2S is the third endogenously generated gaseous signaling compound and has also been known to involve a variety of physiological processes. To better understand its physiological and pathological functions, efficient methods for monitoring of H2S in living systems are desired. Although quite a few one photon fluorescence probes have been reported for H2S, two-photon (TP) probes are more favorable for intracellular imaging.
View Article and Find Full Text PDFThe use of a nanoscale DNA-Au dendrimer as a signal amplifier was proposed for the universal design of functional DNA-based ultra-sensitive SERS biosensors. This novel design combines the high specificity of functional DNA with the high sensitivity of surface-enhanced Raman scattering (SERS) spectroscopy, resulting in sensitivity superior to that of previously reported sensors.
View Article and Find Full Text PDFThis work reports the development of a new molecular beacon-based junction sensing system with highly sensitive DNA detection and a strong capability to identify SNPs. The single linear probe typically labels the midsection of the oligonucleotide, but our next-generation junction sensing system uses a hairpin-structured MB with labels on each end of the oligonucleotide to maintain the cleaving activity of our newly designed ssDNA-cleaved endonuclease, Nt.BbvCI, rather than the typical dsDNA-cleaved endonuclease.
View Article and Find Full Text PDF