The in-stent restenosis (IRS) after the percutaneous coronary intervention contributes to the major treatment failure of stent implantation. MicroRNAs have been revealed as powerful gene medicine to regulate endothelial cells (EC) and smooth muscle cells (SMC) in response to vascular injury, providing a promising therapeutic candidate to inhibit IRS. However, the controllable loading and eluting of hydrophilic bioactive microRNAs pose a challenge to current lipophilic stent coatings.
View Article and Find Full Text PDFPurpose: To investigate the effect of metformin on the prognosis of patients with oral squamous cell carcinoma after surgical treatment.
Methods: Three hundred and forty-six patients with oral squamous cell carcinoma after operation in Xiangya Hospital of Central South University from October 2015 to October 2016 were selected and divided into experimental group and control group. In the experimental group, 71 patients with oral squamous cell carcinoma received metformin after surgery.
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
View Article and Find Full Text PDFPhosphorylcholine (PC) based polymer coatings with excellent biocompatibility have shown successful commercialization in drug-eluting stents. However, poor degradability represents a challenge in the application of biodegradable stents. Herein, a biodegradable phosphorylcholine copolymer is developed based on one-step radical ring-opening polymerization (RROP).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2019
Photothermal therapy (PTT) is a promising method to kill bacteria because of the broad-spectrum of antibacterial activity and the ability of spatiotemporal regulation. In the previously reported systems, light induced high temperature (˜70 °C) was essential for effectively killing of bacteria, which, however, would also damage nearby nontarget cells or tissues. Here we report photothermal nanoparticles (NPs) for more targeting and killing bacteria at a relative low temperature.
View Article and Find Full Text PDFHuan Jing Ke Xue
August 2017
The goal of the present study was to explore the effects of traffic-related air pollution exposure on DNA methylation. Into five groups of 6, 30 healthy Wistar rats were randomly divided. Three groups of rats were then exposed to traffic-related air pollution at high (tunnel), moderate (crossroad), and low (control) pollution levels for 7 d, whereas the two other groups were exposed in the tunnel for 14 d/28 d.
View Article and Find Full Text PDF